Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez López, Iván
dc.contributor.authorMartínez Fuentes, José Clemencio
dc.contributor.authorBueno Ferrer, Juan
dc.contributor.authorDavó Quiñonero, Arantxa
dc.contributor.authorGuillén Bas, Esteban
dc.contributor.authorBailón García, Esther 
dc.contributor.authorLozano Castelló, Dolores
dc.contributor.authorBueno López, Agustín
dc.date.accessioned2024-07-16T13:55:30Z
dc.date.available2024-07-16T13:55:30Z
dc.date.issued2024-03-08
dc.identifier.citationI. Martínez-López et al. 81 (2024) 102733. [https://doi.org/10.1016/j.jcou.2024.102733]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93159
dc.description.abstract3D-printed high-surface carbon monoliths have been fabricated and tested as catalyst supports of CO2 methanation active phases (NiO-CeO2, 12 wt% Ni). The carbon carriers show a developed microporosity and good adherence to the catalytic phases of NiO-CeO2, showing great stability and cyclability. Two monolith designs were used: a conventional parallel-channeled structure (honeycomb) and a complex 3D network of non-linear channels built upon interconnected circular sections (circles), where flow turbulences along the reactant gas path are spurred. The effect of the active phases particle size on the catalyst distribution and the overall performance has been assessed by comparing NiO-CeO2 nanoparticles of 7 nm average (Np), with a reference counterpart of uncontrolled structure (Ref). The improved radial gases diffusion in the circles monolith design is confirmed, and nanoparticles show enhanced CO2 methanation activity than the uncontrolled-size active phase at low temperatures (< 300 ºC). On the contrary, the Ref catalysts achieve higher CH4 production at higher temperatures, where the reaction kinetics is controlled by mass transfer limitations (T > 300 ºC). SEM and Hg porosimetry evidence that nanoparticles are deposited at deeper penetration through the narrow micropores of the carbon matrix of the monolithic supports, which tend to accumulate on the channels surface remaining more accessible to the reactant molecules. Altogether, this study examines the impact of the channel tortuosity and the active phase sizing on the CO2 methanation activity, serving as ground knowledge for the further rational and scalable fabrication of carbon monolith for catalytic applications.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovation (Projects PID2019-105960RB-C22, TED2021- 129216B-I00 and PDC2022-133839-C22)es_ES
dc.description.sponsorshipGeneralitat Valenciana (Projects CIPROM/2021/74, MFA/2022/036)es_ES
dc.description.sponsorshipEU NextGeneration (PRTR-C17.I1)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject3D printinges_ES
dc.subjectCeriaes_ES
dc.subjectNanoparticlees_ES
dc.titleStructural design and particle size examination on NiO-CeO2 catalysts supported on 3D-printed carbon monoliths for CO2 methanationes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/PRTR/C17.I1es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jcou.2024.102733
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional