Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz de Miras, Juan 
dc.contributor.authorCasali, Adenauer G.
dc.contributor.authorMassimini, Marcello
dc.contributor.authorIbáñez Molina, Antonio J.
dc.contributor.authorSoriano, María F.
dc.contributor.authorIglesias Parro, Sergio
dc.date.accessioned2024-07-15T10:25:14Z
dc.date.available2024-07-15T10:25:14Z
dc.date.issued2024-09-01
dc.identifier.citationJuan Ruiz de Miras, Adenauer G. Casali, Marcello Massimini, Antonio J. Ibáñez-Molina, María F. Soriano, Sergio Iglesias-Parro, FDI: A MATLAB tool for computing the fractal dimension index of sources reconstructed from EEG data, Computers in Biology and Medicine, Volume 179, 2024, 108871, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2024.108871es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93125
dc.description.abstractBackground: The fractal dimension (FD) is a valuable tool for analysing the complexity of neural structures and functions in the human brain. To assess the spatiotemporal complexity of brain activations derived from electroencephalogram (EEG) signals, the fractal dimension index (FDI) was developed. This measure integrates two distinct complexity metrics: 1) integration FD, which calculates the FD of the spatiotemporal coordinates of all significantly active EEG sources (4DFD); and 2) differentiation FD, determined by the complexity of the temporal evolution of the spatial distribution of cortical activations (3DFD), estimated via the Higuchi FD [HFD(3DFD)]. The final FDI value is the product of these two measurements: 4DFD × HFD(3DFD). Although FDI has shown utility in various research on neurological and neurodegenerative disorders, existing literature lacks standardized implementation methods and accessible coding resources, limiting wider adoption within the field. Methods: We introduce an open-source MATLAB software named FDI for measuring FDI values in EEG datasets. Results: By using CUDA for leveraging the GPU massive parallelism to optimize performance, our software facilitates efficient processing of large-scale EEG data while ensuring compatibility with pre-processed data from widely used tools such as Brainstorm and EEGLab. Additionally, we illustrate the applicability of FDI by demonstrating its usage in two neuroimaging studies. Access to the MATLAB source code and a precompiled executable for Windows system is provided freely. Conclusions: With these resources, neuroscientists can readily apply FDI to investigate cortical activity complexity within their own studies.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectFractal dimensiones_ES
dc.subjectEEG sourceses_ES
dc.subjectMATLABes_ES
dc.subjectCUDAes_ES
dc.titleFDI: a MATLAB tool for computing the fractal dimension index of sources reconstructed from EEG dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.compbiomed.2024.108871


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License