Afficher la notice abrégée

dc.contributor.authorRuiz Fresneda, Miguel Ángel 
dc.contributor.authorLazuén López, Guillermo
dc.contributor.authorPérez-Muelas, Eduardo
dc.contributor.authorPeña Martín, Jesús
dc.contributor.authorLinares-Jiménez, Raúl Eduardo
dc.contributor.authorNewman Portela, Antonio Martín 
dc.contributor.authorMerroun, Mohamed Larbi 
dc.date.accessioned2024-07-12T11:44:58Z
dc.date.available2024-07-12T11:44:58Z
dc.date.issued2024-07-12
dc.identifier.citationRuiz-Fresneda, M.A., Lazúen-López, G., Pérez-Muelas, E. et al. Identification of a multi-modal mechanism for Se(VI) reduction and Se(0) allotropic transition by Stenotrophomonas bentonitica. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-34256-zes_ES
dc.identifier.urihttps://hdl.handle.net/10481/93097
dc.descriptionFunding for open access publishing: Universidad de Granada/CBUA. This work was supported by grant TED2021.131099B.I00 awarded by the Spanish Ministry of Science and Innovation to M. L. M. The research presented in this article has also received funding from the RADONORM project of the Euratom research and training programme 2019–2020 (grant agreement number 900009).es_ES
dc.description.abstractMicroorganisms can play a key role in selenium (Se) bioremediation and the fabrication of Se-based nanomaterials by reducing toxic forms (Se(VI) and Se(IV)) into Se(0). In recent years, omics have become a useful tool in understanding the metabolic pathways involved in the reduction process. This paper aims to elucidate the specific molecular mechanisms involved in Se(VI) reduction by the bacterium Stenotrophomonas bentonitica. Both cytoplasmic and membrane fractions were able to reduce Se(VI) to Se(0) nanoparticles (NPs) with different morphologies (nanospheres and nanorods) and allo- tropes (amorphous, monoclinic, and trigonal). Proteomic analyses indicated an adaptive response against Se(VI) through the alteration of several metabolic pathways including those related to energy acquisition, synthesis of proteins and nucleic acids, and transport systems. Whilst the thioredoxin system and the Painter reactions were identified to play a crucial role in Se reduction, flagellin may also be involved in the allotropic transformation of Se. These findings suggest a multi-modal reduction mechanism is involved, providing new insights for developing novel strategies in bioremediation and nanoparticle synthesis for the recovery of critical materials within the concept of circular economy.es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovation TED2021.131099B.I00es_ES
dc.description.sponsorshipRADONORM project 900009es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectSelenatees_ES
dc.subjectBioremediationes_ES
dc.subjectMulti-modales_ES
dc.subjectReductiones_ES
dc.subjectThioredoxines_ES
dc.subjectFlagellines_ES
dc.titleIdentification of a multi-modal mechanism for Se(VI) reduction and Se(0) allotropic transition by Stenotrophomonas bentoniticaes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License