Mostrar el registro sencillo del ítem

dc.contributor.authorBurgos Ruiz, Miguel 
dc.contributor.authorIlett, Martha
dc.contributor.authorRoncal Herrero, Teresa
dc.contributor.authorElert, Kerstin 
dc.contributor.authorRubio Domene, Ramón
dc.contributor.authorRuiz Agudo, Encarnación 
dc.contributor.authorRodríguez Navarro, Carlos Manuel 
dc.date.accessioned2024-07-02T08:00:44Z
dc.date.available2024-07-02T08:00:44Z
dc.date.issued2024-06-28
dc.identifier.urihttps://hdl.handle.net/10481/92912
dc.description.abstractIn this work, the potential of bio-inspired strategies for the synthesis of calcium sulfate (CaSO4·nH2O) materials for heritage conservation is explored. For this, a nonclassical multi-step crystallization mechanism to understand the effect of calcein– a fluorescent chelating agent with a high affinity for divalent cations— on the nucleation and growth of calcium sulfate phases is proposed. Moving from the nano- to the macro-scale, this strategy sets the basis for the design and production of fluorescent nano-bassanite (NB-C; CaSO4·0.5H2O), with application as a fully compatible consolidant for the conservation of historic plasterwork. Once applied to gypsum (CaSO4·2H2O) plaster specimens, cementation upon hydration of nano-bassanite results in a significant increase in mechanical strength, while intracrystalline occlusion of calcein in newly-formed gypsum cement improves its weathering resistance. Furthermore, under UV irradiation, the luminescence produced by calcein molecules occluded in gypsum crystals formed upon nano-bassanite hydration allows the easy identification of the newly deposited consolidant within the treated gypsum plaster without altering the substrate’s appearance.es_ES
dc.description.sponsorshipThis research was funded by Spanish Government grant RTI2018-099565- B-I00; Spanish Government grant PID2021.125305NB.I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF “A way of making Europe”; Junta de Andalucía research group RNM-179; and University of Granada, Unidad Científica de Excelencia UCE-PP2016-05. M.B.-R. was granted with a predoctoral position funded by the Spanish Government (PRE2019-090256). This research was performed within the frame of the inter-institutional collaboration agreement “Patrimonio Cultural Árabe e Islámico (PACAI), UGR, Unidad Asociada al CSIC por la EEA-ILC (2024- 2027)”. HR-XRD analyses were performed at the SOLEIL Synchrotron Facility, with the invaluable technical assistance of E. Elkaim (CRISTAL Beamline, SOLEIL Synchrotron) and L. Monasterio-Guillot (Instituto Andaluz de Ciencias de la Tierra, CSIC). We are grateful for the cooperation of the Leeds Electron Microscopy and Spectroscopy Centre (LEMAS), at the University of Leeds, with the TEM measurements in both cryogenic and noncryogenic conditions. TEM analyses were also carried out at the Centro de Instrumentación Científica (CIC), UGR. Open access was funded by the University of Granada/CBUA.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.titleBio-Inspired Fluorescent Calcium Sulfate for the Conservation of Gypsum Plasterworkes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1002/smll.202402581
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NoDerivatives 4.0 Internacional