Mostrar el registro sencillo del ítem
Bidirectional Recurrent Imputation and Abundance Estimation of LULC Classes With MODIS Multispectral Time-Series and Geo-Topographic and Climatic Data
dc.contributor.author | Rodriguez Ortega, José | |
dc.contributor.author | Khaldi, Rohaifa | |
dc.contributor.author | Alcaraz Segura, Domingo | |
dc.contributor.author | Tabik, Siham | |
dc.date.accessioned | 2024-06-18T11:42:10Z | |
dc.date.available | 2024-06-18T11:42:10Z | |
dc.date.issued | 2024-01-29 | |
dc.identifier.citation | J. Rodríguez-Ortega, R. Khaldi, D. Alcaraz-Segura and S. Tabik, "Bidirectional Recurrent Imputation and Abundance Estimation of LULC Classes With MODIS Multispectral Time-Series and Geo-Topographic and Climatic Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 4626-4645, 2024, doi: 10.1109/JSTARS.2024.3359647 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/92683 | |
dc.description.abstract | Remotely sensed data are dominated by mixed land use and land cover (LULC) types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels into constituent LULC types and their abundance fractions.While existing studies on deep learning (DL) for SU typically focus on single time-step hyperspectral or multispectral data, our work pioneers SU using MODIS MS time series, addressing missing data with end-to-end DL models. Our approach enhances a long-short-term-memory-based model by incorporating geographic, topographic (geo-topographic), and climatic ancillary information. Notably, our method eliminates the need for explicit endmember extraction, instead learning the input–output relationship between mixed spectra and LULC abundances through supervised learning. Experimental results demonstrate that integrating spectral-temporal input data with geo-topographic and climatic information significantly improves the estimation of LULC abundances in mixed pixels. To facilitate this study, we curated a novel labeled dataset for Andalusia (Spain) with monthly MODIS MS time series at 460-m resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing, this dataset provides pixel-level annotations of LULC abundances along with ancillary information. | es_ES |
dc.description.sponsorship | Project EarthCul PID2020-118041GB-I00 within the Spanish Research Projects Plan supported by MCIN/AEI/10.13039/501100011033 and by FEDER funds “Una manera de hacer Europa” | es_ES |
dc.description.sponsorship | Project ECOPOTENTIAL, supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 641762 | es_ES |
dc.description.sponsorship | TED project under Grant TED2021-129690B-I00, supported by the Ministry of Science and Innovation | es_ES |
dc.description.sponsorship | Project “Thematic Center on Mountain Ecosystem and Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada” under Grant LifeWatch-2019-10-UGR-01, which has been cofunded by the Ministry of Science and Innovation through the FEDER funds from the Spanish Pluriregional Operational Program 2014-2020 (POPE), LifeWatch-ERIC action line | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Abundance estimation | es_ES |
dc.subject | Bidirectional long-short term memory (LSTM) | es_ES |
dc.subject | Climatic data | es_ES |
dc.title | Bidirectional Recurrent Imputation and Abundance Estimation of LULC Classes With MODIS Multispectral Time-Series and Geo-Topographic and Climatic Data | es_ES |
dc.type | journal article | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641762 | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1109/JSTARS.2024.3359647 | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.