Mostrar el registro sencillo del ítem

dc.contributor.authorRodriguez Ortega, José 
dc.contributor.authorKhaldi, Rohaifa 
dc.contributor.authorAlcaraz Segura, Domingo 
dc.contributor.authorTabik, Siham 
dc.date.accessioned2024-06-18T11:42:10Z
dc.date.available2024-06-18T11:42:10Z
dc.date.issued2024-01-29
dc.identifier.citationJ. Rodríguez-Ortega, R. Khaldi, D. Alcaraz-Segura and S. Tabik, "Bidirectional Recurrent Imputation and Abundance Estimation of LULC Classes With MODIS Multispectral Time-Series and Geo-Topographic and Climatic Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 4626-4645, 2024, doi: 10.1109/JSTARS.2024.3359647es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92683
dc.description.abstractRemotely sensed data are dominated by mixed land use and land cover (LULC) types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels into constituent LULC types and their abundance fractions.While existing studies on deep learning (DL) for SU typically focus on single time-step hyperspectral or multispectral data, our work pioneers SU using MODIS MS time series, addressing missing data with end-to-end DL models. Our approach enhances a long-short-term-memory-based model by incorporating geographic, topographic (geo-topographic), and climatic ancillary information. Notably, our method eliminates the need for explicit endmember extraction, instead learning the input–output relationship between mixed spectra and LULC abundances through supervised learning. Experimental results demonstrate that integrating spectral-temporal input data with geo-topographic and climatic information significantly improves the estimation of LULC abundances in mixed pixels. To facilitate this study, we curated a novel labeled dataset for Andalusia (Spain) with monthly MODIS MS time series at 460-m resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing, this dataset provides pixel-level annotations of LULC abundances along with ancillary information.es_ES
dc.description.sponsorshipProject EarthCul PID2020-118041GB-I00 within the Spanish Research Projects Plan supported by MCIN/AEI/10.13039/501100011033 and by FEDER funds “Una manera de hacer Europa”es_ES
dc.description.sponsorshipProject ECOPOTENTIAL, supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 641762es_ES
dc.description.sponsorshipTED project under Grant TED2021-129690B-I00, supported by the Ministry of Science and Innovationes_ES
dc.description.sponsorshipProject “Thematic Center on Mountain Ecosystem and Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada” under Grant LifeWatch-2019-10-UGR-01, which has been cofunded by the Ministry of Science and Innovation through the FEDER funds from the Spanish Pluriregional Operational Program 2014-2020 (POPE), LifeWatch-ERIC action linees_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineerses_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAbundance estimationes_ES
dc.subjectBidirectional long-short term memory (LSTM)es_ES
dc.subjectClimatic dataes_ES
dc.titleBidirectional Recurrent Imputation and Abundance Estimation of LULC Classes With MODIS Multispectral Time-Series and Geo-Topographic and Climatic Dataes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/641762es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JSTARS.2024.3359647
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional