Afficher la notice abrégée

dc.contributor.authorLara Velasco, David
dc.contributor.authorPérez Fernández, Teresa Encarnación 
dc.date.accessioned2024-06-12T10:32:40Z
dc.date.available2024-06-12T10:32:40Z
dc.date.issued2014-06-12
dc.identifier.citationComp. Appl. Math. 43, 277 (2024)es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92536
dc.description.abstractA general frame for Bernstein-type operators that preserve derivatives is given. We introduce Bernstein-type operators based in the weighted classical Jacobi inner product on the interval [0, 1] that extend the well known Bernstein–Durrmeyer operator as well as some other types of Bernstein operators that appear in the literature. Apart from standard results, we deduce properties about the preservation of derivatives and prove that classical Jacobi orthogonal polynomials on [0, 1] are the eigenfunctions of these operators. We also study the limit cases when one of the parameters of the Jacobi polynomials is a negative integer. Finally, we study several numerical examples.es_ES
dc.language.isoenges_ES
dc.publisherSpringerLinkes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleBernstein–Jacobi-type operators preserving derivativeses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1007/s40314-024-02796-2
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional