Afficher la notice abrégée

dc.contributor.authorHernández González, Israel Alejandro
dc.contributor.authorGarcía Macías, Enrique 
dc.date.accessioned2024-06-10T10:39:24Z
dc.date.available2024-06-10T10:39:24Z
dc.date.issued2024-04-06
dc.identifier.citationHernández-González, I.A., García-Macías, E. Towards a comprehensive damage identification of structures through populations of competing models. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01972-6es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92459
dc.description.abstractModel-based damage identification for structural health monitoring (SHM) remains an open issue in the literature. Along with the computational challenges related to the modeling of full-scale structures, classical single-model structural identification (St-Id) approaches provide no means to guarantee the physical meaningfulness of the inverse calibration results. In this light, this work introduces a novel methodology for model-driven damage identification based on multi-class digital models formed by a population of competing structural models, each representing a different failure mechanism. The forward models are replaced by computationally efficient meta-models, and continuously calibrated using monitoring data. If an anomaly in the structural performance is detected, a model selection approach based on the Bayesian information criterion (BIC) is used to identify the most plausibly activated failure mechanism. The potential of the proposed approach is illustrated through two case studies, including a numerical planar truss and a real-world historical construction: the Muhammad Tower in the Alhambra fortress.es_ES
dc.description.sponsorshipSecretaría General de Universidades, Investigación y Tecnología de la Junta de Andalucía (Spain) through the research project “Revalorización Estructural del Patrimonio Arquitectónico de Tapial en Andalucía” [Ref: A-TEP-182-UGR18]es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovation through the research project “BRIDGEXT - Life-extension of ageing bridges: Towards a long-term sustainable Structural Health Monitoring” (Ref. PID2020-116644RB-I00)es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Granada/CBUA.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDamage identificationes_ES
dc.subjectDigital twinses_ES
dc.subjectModel selectiones_ES
dc.titleTowards a comprehensive damage identification of structures through populations of competing modelses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00366-024-01972-6
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional