Mostrar el registro sencillo del ítem

dc.contributor.authorSchmidt, Arne
dc.contributor.authorMorales Álvarez, Pablo 
dc.contributor.authorMolina Soriano, Rafael 
dc.date.accessioned2024-06-10T10:19:37Z
dc.date.available2024-06-10T10:19:37Z
dc.date.issued2024-01-15
dc.identifier.citationPublished version: A. Schmidt, P. Morales-Álvarez and R. Molina, "Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation," 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023, pp. 21040-21049, doi: 10.1109/ICCV51070.2023.01929es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92455
dc.description.abstractMedical image segmentation is a challenging task, particularly due to inter- and intra-observer variability, even between medical experts. In this paper, we propose a novel model, called Probabilistic Inter-Observer and iNtra- Observer variation NetwOrk (Pionono). It captures the labeling behavior of each rater with a multidimensional probability distribution and integrates this information with the feature maps of the image to produce probabilistic segmentation predictions. The model is optimized by variational inference and can be trained end-to-end. It outperforms state-of-the-art models such as STAPLE, Probabilistic UNet, and models based on confusion matrices. Additionally, Pionono predicts multiple coherent segmentation maps that mimic the rater’s expert opinion, which provides additional valuable information for the diagnostic process. Experiments on real-world cancer segmentation datasets demonstrate the high accuracy and efficiency of Pionono, making it a powerful tool for medical image analysis.es_ES
dc.description.sponsorshipEuropean Union’s H2020 research and innovation programme (Marie Skłodowska Curie grant agreement No 860627, CLARIFY Project)es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovation (project PID2019-105142RB-C22)es_ES
dc.description.sponsorshipFEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (project P20 00286)es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineerses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleProbabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentationes_ES
dc.typeconference outputes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/MSC 860627es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ICCV51070.2023.01929
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional