Mostrar el registro sencillo del ítem

dc.contributor.authorTabatabaei, Zahra
dc.contributor.authorPérez Bueno, Fernando 
dc.contributor.authorColomer, Adrián
dc.contributor.authorOliver Moll, Javier
dc.contributor.authorMolina Soriano, Rafael 
dc.contributor.authorNaranjo, Valery
dc.date.accessioned2024-06-03T09:46:51Z
dc.date.available2024-06-03T09:46:51Z
dc.date.issued2024-03-01
dc.identifier.citationTabatabaei, Z.; Pérez Bueno, F.; Colomer, A.; Moll, J.O.; Molina, R.; Naranjo, V. Advancing Content- Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques. Appl. Sci. 2024, 14, 2063. https:// doi.org/10.3390/app14052063es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92252
dc.descriptionAuthor Keywords: color normalization; computer-aided diagnosis (CAD); content-based image retrieval (CBIR); histopathological images; whole-slide images (WSIs)es_ES
dc.description.abstractContent-Based Histopathological Image Retrieval (CBHIR) is a search technique based on the visual content and histopathological features of whole-slide images (WSIs). CBHIR tools assist pathologists to obtain a faster and more accurate cancer diagnosis. Stain variation between hospitals hampers the performance of CBHIR tools. This paper explores the effects of color normalization (CN) in a recently proposed CBHIR approach to tackle this issue. In this paper, three different CN techniques were used on the CAMELYON17 (CAM17) data set, which is a breast cancer data set. CAM17 consists of images taken using different staining protocols and scanners in five hospitals. Our experiments reveal that a proper CN technique, which can transfer the color version into the most similar median values, has a positive impact on the retrieval performance of the proposed CBHIR framework. According to the obtained results, using CN as a pre-processing step can improve the accuracy of the proposed CBHIR framework to 97% (a 14% increase), compared to working with the original images.es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 860627 (CLARIFY Project). CLoud ARtificial Intelligence For pathologY. DOI: 10.3030/860627es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectColor es_ES
dc.subjectHistopathological imageses_ES
dc.subjectContent Based Image Retrievales_ES
dc.subjectWhole slide imaginges_ES
dc.titleAdvancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniqueses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/app14052063
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional