Mostrar el registro sencillo del ítem
Advancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques
dc.contributor.author | Tabatabaei, Zahra | |
dc.contributor.author | Pérez Bueno, Fernando | |
dc.contributor.author | Colomer, Adrián | |
dc.contributor.author | Oliver Moll, Javier | |
dc.contributor.author | Molina Soriano, Rafael | |
dc.contributor.author | Naranjo, Valery | |
dc.date.accessioned | 2024-06-03T09:46:51Z | |
dc.date.available | 2024-06-03T09:46:51Z | |
dc.date.issued | 2024-03-01 | |
dc.identifier.citation | Tabatabaei, Z.; Pérez Bueno, F.; Colomer, A.; Moll, J.O.; Molina, R.; Naranjo, V. Advancing Content- Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques. Appl. Sci. 2024, 14, 2063. https:// doi.org/10.3390/app14052063 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/92252 | |
dc.description | Author Keywords: color normalization; computer-aided diagnosis (CAD); content-based image retrieval (CBIR); histopathological images; whole-slide images (WSIs) | es_ES |
dc.description.abstract | Content-Based Histopathological Image Retrieval (CBHIR) is a search technique based on the visual content and histopathological features of whole-slide images (WSIs). CBHIR tools assist pathologists to obtain a faster and more accurate cancer diagnosis. Stain variation between hospitals hampers the performance of CBHIR tools. This paper explores the effects of color normalization (CN) in a recently proposed CBHIR approach to tackle this issue. In this paper, three different CN techniques were used on the CAMELYON17 (CAM17) data set, which is a breast cancer data set. CAM17 consists of images taken using different staining protocols and scanners in five hospitals. Our experiments reveal that a proper CN technique, which can transfer the color version into the most similar median values, has a positive impact on the retrieval performance of the proposed CBHIR framework. According to the obtained results, using CN as a pre-processing step can improve the accuracy of the proposed CBHIR framework to 97% (a 14% increase), compared to working with the original images. | es_ES |
dc.description.sponsorship | European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 860627 (CLARIFY Project). CLoud ARtificial Intelligence For pathologY. DOI: 10.3030/860627 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Color | es_ES |
dc.subject | Histopathological images | es_ES |
dc.subject | Content Based Image Retrieval | es_ES |
dc.subject | Whole slide imaging | es_ES |
dc.title | Advancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3390/app14052063 | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.