Afficher la notice abrégée

dc.contributor.authorMoreno Frías, María Ángeles
dc.contributor.authorRosales González, José Carlos 
dc.date.accessioned2024-05-28T08:55:02Z
dc.date.available2024-05-28T08:55:02Z
dc.date.issued2024-03-14
dc.identifier.citationMoreno-Frías, M.A.; Rosales, J.C. Ratio-Covarieties of Numerical Semigroups. Axioms 2024, 13, 193. https://doi.org/10.3390/axioms13030193es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92145
dc.description.abstractIn this work, we will introduce the concept of ratio-covariety, as a family R of numerical semigroups that has a minimum, denoted by min(R), is closed under intersection, and if S ∈ R and S ̸= min(R), then S\{r(S)} ∈ R, where r(S) denotes the ratio of S. The notion of ratiocovariety will allow us to: (1) describe an algorithmic procedure to compute R; (2) prove the existence of the smallest element of R that contains a set of positive integers; and (3) talk about the smallest ratio-covariety that contains a finite set of numerical semigroups. In addition, in this paper we will apply the previous results to the study of the ratio-covariety R(F,m) = {S | S is a numerical semigroup with Frobenius number F and multiplicity m}.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNumerical semigroupes_ES
dc.subjectFrobenius numberes_ES
dc.subjectGenuses_ES
dc.titleRatio-Covarieties of Numerical Semigroupses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/axioms13030193
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional