Afficher la notice abrégée

dc.contributor.authorGarcía-Merino, José Carlos
dc.contributor.authorCalvo-Jurado, Carmen
dc.contributor.authorGarcía Macías, Enrique 
dc.date.accessioned2024-05-28T08:17:30Z
dc.date.available2024-05-28T08:17:30Z
dc.date.issued2024-01-26
dc.identifier.citationGarcía-Merino, J. C., Carmen Calvo-Jurado, and Enrique García-Macías. Sparse polynomial chaos expansion for universal stochastic kriging. Journal of Computational and Applied Mathematics 444 (2024) 115794 [10.1016/j.cam.2024.115794]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92138
dc.description.abstractSurrogate modelling techniques have opened up new possibilities to overcome the limitations of computationally intensive numerical models in various areas of engineering and science. However, while fundamental in many engineering applications and decision-making, the incorporation of uncertainty quantification into meta-models remains a challenging open area of research. To address this issue, this paper presents a novel stochastic simulation approach combining sparse polynomial chaos expansion (PCE) and Stochastic Kriging (SK). Specifically, the proposed approach adopts adaptive sparse PCE as the trend model in SK, achieving both global and local prediction capabilities and maximizing the role of the stochastic term to conduct uncertainty quantification. To maximize the generalization and computational efficiency of the meta-model, the Least Angle Regression (LAR) algorithm is adopted to automatically select the optimal polynomial basis in the PCE. The computational effectiveness and accuracy of the proposed approach are appraised through a comprehensive set of case studies and different quality metrics. The presented numerical results and discussion demonstrate the superior performance of the proposed approach compared to the classical ordinary SK model, offering high flexibility for the characterization of both extrinsic and intrinsic uncertainty for a wide variety of problems.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación (Spain) [PID2020-116809GB-I00]es_ES
dc.description.sponsorshipJunta de Extremadura (Spain) through Research Group Grants [GR18023]es_ES
dc.description.sponsorshipEuropean Regional Development Fund (ERDF)es_ES
dc.description.sponsorshipJunta de Extremadura, Spain (Ref. IB20040)es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación (Spain) through the research project ‘‘BRIDGEXT - Life-extension of ageing bridges: Towards a long-term sustainable Structural Health Monitoring’’ (Ref. PID2020-116644RB-I00)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectKriginges_ES
dc.subjectLeast angle regressiones_ES
dc.subjectPolynomial chaos expansiones_ES
dc.titleSparse polynomial chaos expansion for universal stochastic kriginges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.cam.2024.115794
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional