Mostrar el registro sencillo del ítem

dc.contributor.authorEscobar Pérez, Juan José 
dc.contributor.authorRodríguez, Francisco
dc.contributor.authorSavran Kiziltepe, Rukiye
dc.contributor.authorPrieto Campos, Beatriz 
dc.contributor.authorKimovski, Dragi
dc.contributor.authorOrtiz, Andrés
dc.contributor.authorDamas Hermoso, Miguel 
dc.date.accessioned2024-05-23T09:37:33Z
dc.date.available2024-05-23T09:37:33Z
dc.date.issued2023-09-30
dc.identifier.citationEscobar, J.J. et al. (2023). Energy-Aware KNN for EEG Classification: A Case Study in Heterogeneous Platforms. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_40es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92001
dc.description.abstractThe growing energy consumption caused by IT is forcing application developers to consider energy efficiency as one of the fundamental design parameters. This parameter acquires great relevance in HPC systems when running artificial neural networks and Machine Learning applications. Thus, this article shows an example of how to estimate and consider energy consumption in a real case of EEG classification. An efficient and distributed implementation of the KNN algorithm that uses mRMR as a feature selection technique to reduce the dimensionality of the dataset is proposed. The performance of three different workload distributions is analyzed to identify which one is more suitable according to the experimental conditions. The proposed approach outperforms the classification results obtained by previous works. It achieves an accuracy rate of 88.8% and a speedup of 74.53 when running on a multi-node heterogeneous cluster, consuming only 13.38% of the energy of the sequential version.es_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation, and Universities under grants PGC2018-098813-B-C31 and PID2022-137461NB-C32es_ES
dc.description.sponsorshipERDF fundes_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectParallel and distributed programminges_ES
dc.subjectHeterogeneous clusterses_ES
dc.subjectEnergy-aware computinges_ES
dc.subjectEEG classificationes_ES
dc.subjectKNNes_ES
dc.subjectmRMRes_ES
dc.titleEnergy-aware KNN for EEG Classification: A Case Study in Heterogeneous Platformses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/978-3-031-43085-5_40
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License