Mostrar el registro sencillo del ítem

dc.contributor.authorReza Rezapour, M.
dc.contributor.authorBiel Ruiz, Blanca 
dc.date.accessioned2024-05-22T10:22:48Z
dc.date.available2024-05-22T10:22:48Z
dc.date.issued2024-02-01
dc.identifier.citationM. Reza Rezapour and Blanca Biel ACS Applied Electronic Materials 2024 6 (2), 1244-1251 DOI: 10.1021/acsaelm.3c01607es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91973
dc.description.abstractIn pursuit of fast, cost-effective, and reliable DNA sequencing techniques, a variety of two-dimensional (2D) material-based nanodevices such as solid-state nanopores and nanochannels have been explored and established. Given the promising potential of graphene for the design and fabrication of nanobiosensors, other 2D carbon allotropes such as graphyne and graphdiyne have also attracted a great deal of attention as candidate materials for the development of sequencing technology. Herein, employing the 2D electronic molecular spectroscopy (2DMES) method, we investigate the capability of graphdiyne nanoribbons (GDNRs) as the building blocks of a feasible, precise, and ultrafast sequencing device. Using first-principles calculations, we study the adsorption of four canonical nucleobases (NBs), i.e., adenine (A), cytosine (C), guanine (G), and thymine (T) on an armchair GDNR (AGDNR). Our calculations reveal that compared to graphene, graphdiyne demonstrates more distinct binding energies for different NBs, indicating its more promising ability to unambiguously recognize DNA bases. Utilizing the 2DMES technique, we calculate the differential conductance (Δg) of the studied NB−AGDNR systems and show that the resulting Δg maps, unique for each NB−AGDNR complex, can be used to recognize each individual NB without ambiguity. We also investigate the conductance sensitivity of the proposed nanobiosensor and show that it exhibits high sensitivity and selectivity toward various NBs. Thus, our proposed graphdiyne-based nanodevice would hold promise for next-generation DNA sequencing technology.es_ES
dc.description.sponsorshipHorizon 2020 Framework Programme, H2020 Excellent Science, H2020 Marie Skłodowska-Curie Actions, 841673, project PID2021-125604NB-I00 (AEI/FEDER, UE) and B-FQM-272-UGR20es_ES
dc.description.sponsorshipAEI and FEDER under project PID2021-125604NB-I00 (AEI/FEDER, UE)es_ES
dc.description.sponsorshipPrograma Operativo FEDER of Andalucía 2014-2020 under projects PY18-4834 and BFQM-272-UGR20es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Granada/CBUA.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGraphdiynees_ES
dc.subjectDNA sequencinges_ES
dc.subjectMolecular electronics spectroscopyes_ES
dc.titleUsing Graphdiyne Nanoribbons for Molecular Electronics Spectroscopy and Nucleobase Identification: A Theoretical Investigationes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/MSC 841673es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1021/acsaelm.3c01607
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional