Afficher la notice abrégée

dc.contributor.authorMerelo Guervós, Juan Julián 
dc.date.accessioned2024-05-21T07:29:01Z
dc.date.available2024-05-21T07:29:01Z
dc.date.issued2024-05-19
dc.identifier.urihttps://hdl.handle.net/10481/91923
dc.description.abstractManaging energy resources in scientific computing implies awareness of a wide range of software engineering techniques that, when applied, can minimize the energy footprint of experiments. In the case of evolutionary computation, we are talking about a specific workload that includes the generation of chromosomes and operations that change parts of them or access and operate on them to obtain a fitness value. In a low-level language such as Zig, we will show how different choices will affect the energy consumption of an experiment.es_ES
dc.description.sponsorshipPID2020-115570GB-C22 (DemocratAI::UGR)es_ES
dc.language.isoenges_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGreen computinges_ES
dc.subjectMetaheuristices_ES
dc.subjectEnergy-aware computinges_ES
dc.subjectEvolutionary algorithmses_ES
dc.subjectZiges_ES
dc.titleMinimizing evolutionary algorithms energy consumption in the low-level language Ziges_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional