Show simple item record

dc.contributor.authorMerelo Guervós, Juan Julián 
dc.date.accessioned2024-05-21T07:29:01Z
dc.date.available2024-05-21T07:29:01Z
dc.date.issued2024-05-19
dc.identifier.urihttps://hdl.handle.net/10481/91923
dc.description.abstractManaging energy resources in scientific computing implies awareness of a wide range of software engineering techniques that, when applied, can minimize the energy footprint of experiments. In the case of evolutionary computation, we are talking about a specific workload that includes the generation of chromosomes and operations that change parts of them or access and operate on them to obtain a fitness value. In a low-level language such as Zig, we will show how different choices will affect the energy consumption of an experiment.es_ES
dc.description.sponsorshipPID2020-115570GB-C22 (DemocratAI::UGR)es_ES
dc.language.isoenges_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGreen computinges_ES
dc.subjectMetaheuristices_ES
dc.subjectEnergy-aware computinges_ES
dc.subjectEvolutionary algorithmses_ES
dc.subjectZiges_ES
dc.titleMinimizing evolutionary algorithms energy consumption in the low-level language Ziges_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional