Mostrar el registro sencillo del ítem
A Flexible Big Data System for Credibility-Based Filtering of Social Media Information According to Expertise
dc.contributor.author | Díaz García, José Ángel | |
dc.contributor.author | Gutiérrez Batista, Karel | |
dc.contributor.author | Fernández Basso, Carlos Jesús | |
dc.contributor.author | Ruiz Jiménez, María Dolores | |
dc.contributor.author | Martín Bautista, María José | |
dc.date.accessioned | 2024-05-16T07:31:02Z | |
dc.date.available | 2024-05-16T07:31:02Z | |
dc.date.issued | 2024-04-15 | |
dc.identifier.citation | Diaz-Garcia, J.A., Gutiérrez-Batista, K., Fernandez-Basso, C. et al. A Flexible Big Data System for Credibility-Based Filtering of Social Media Information According to Expertise. Int J Comput Intell Syst 17, 93 (2024). [https://doi.org/10.1007/s44196-024-00483-y] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/91841 | |
dc.description.abstract | Nowadays, social networks have taken on an irreplaceable role as sources of information. Millions of people use them daily to find out about the issues of the moment. This success has meant that the amount of content present in social networks is unmanageable and, in many cases, fake or non-credible. Therefore, a correct pre-processing of the data is necessary if we want to obtain knowledge and value from these data sets. In this paper, we propose a new data pre-processing technique based on Big Data that seeks to solve two of the key concepts of the Big Data paradigm, data validity and credibility of the data and volume. The system is a Spark-based filter that allows us to flexibly select credible users related to a given topic under analysis, reducing the volume of data and keeping only valid data for the problem under study. The proposed system uses the power of word embeddings in conjunction with other text mining and natural language processing techniques. The system has been validated using three real-world use cases. | es_ES |
dc.description.sponsorship | FederaMed project: Grant PID2021-123960OB-I00 funded by MICIU/AEI/10.13039/501100011033 | es_ES |
dc.description.sponsorship | ERDF/EU | es_ES |
dc.description.sponsorship | BIGDATAMED projects with references B-TIC-145-UGR18 and P18-RT-2947 | es_ES |
dc.description.sponsorship | European Union NextGenerationEU /PRTR, grant PLEC2021-007681 funded by MCIN/AEI/10.13039/501100011033 | es_ES |
dc.description.sponsorship | DESINFOSCAN project. Ministerio de Ciencia e Innovacion | es_ES |
dc.description.sponsorship | European Union NextGenerationEU (Grant TED2021-1289402B-C21) | es_ES |
dc.description.sponsorship | NOFACEPS project (PPJIB2021-04) of the University of Granada’s | es_ES |
dc.description.sponsorship | Ministry of Universities through the EU-fundedMargarita Salas Programme | es_ES |
dc.description.sponsorship | Spanish Ministry of Education, Culture and Sport (FPU18/00150) | es_ES |
dc.description.sponsorship | Administration of the Junta de Andalucía | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Social media mining | es_ES |
dc.subject | Pre-processing | es_ES |
dc.subject | Big data | es_ES |
dc.title | A Flexible Big Data System for Credibility-Based Filtering of Social Media Information According to Expertise | es_ES |
dc.type | journal article | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EU/NextGenerationEU/TED2021-1289402B-C21 | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1007/s44196-024-00483-y | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.