Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz García, José Ángel 
dc.contributor.authorGutiérrez Batista, Karel 
dc.contributor.authorFernández Basso, Carlos Jesús 
dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2024-05-16T07:31:02Z
dc.date.available2024-05-16T07:31:02Z
dc.date.issued2024-04-15
dc.identifier.citationDiaz-Garcia, J.A., Gutiérrez-Batista, K., Fernandez-Basso, C. et al. A Flexible Big Data System for Credibility-Based Filtering of Social Media Information According to Expertise. Int J Comput Intell Syst 17, 93 (2024). [https://doi.org/10.1007/s44196-024-00483-y]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91841
dc.description.abstractNowadays, social networks have taken on an irreplaceable role as sources of information. Millions of people use them daily to find out about the issues of the moment. This success has meant that the amount of content present in social networks is unmanageable and, in many cases, fake or non-credible. Therefore, a correct pre-processing of the data is necessary if we want to obtain knowledge and value from these data sets. In this paper, we propose a new data pre-processing technique based on Big Data that seeks to solve two of the key concepts of the Big Data paradigm, data validity and credibility of the data and volume. The system is a Spark-based filter that allows us to flexibly select credible users related to a given topic under analysis, reducing the volume of data and keeping only valid data for the problem under study. The proposed system uses the power of word embeddings in conjunction with other text mining and natural language processing techniques. The system has been validated using three real-world use cases.es_ES
dc.description.sponsorshipFederaMed project: Grant PID2021-123960OB-I00 funded by MICIU/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipERDF/EUes_ES
dc.description.sponsorshipBIGDATAMED projects with references B-TIC-145-UGR18 and P18-RT-2947es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU /PRTR, grant PLEC2021-007681 funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipDESINFOSCAN project. Ministerio de Ciencia e Innovaciones_ES
dc.description.sponsorshipEuropean Union NextGenerationEU (Grant TED2021-1289402B-C21)es_ES
dc.description.sponsorshipNOFACEPS project (PPJIB2021-04) of the University of Granada’ses_ES
dc.description.sponsorshipMinistry of Universities through the EU-fundedMargarita Salas Programmees_ES
dc.description.sponsorshipSpanish Ministry of Education, Culture and Sport (FPU18/00150)es_ES
dc.description.sponsorshipAdministration of the Junta de Andalucíaes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSocial media mininges_ES
dc.subjectPre-processinges_ES
dc.subjectBig dataes_ES
dc.titleA Flexible Big Data System for Credibility-Based Filtering of Social Media Information According to Expertisees_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/NextGenerationEU/TED2021-1289402B-C21es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s44196-024-00483-y
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional