Banach spaces with small weakly open subsets of the unit ball and massive sets of Daugavet and ∆-points
Metadatos
Mostrar el registro completo del ítemAutor
Cobollo, Christian; Isert, Daniel; López Pérez, Ginés; Martín Suárez, Miguel; Perreau, Yoël; Quero de la Rosa, Alicia; Quilis, Andrés; Rodríguez-Vidanes, Daniel L.; Rueda Zoca, AbrahamEditorial
Springer Nature
Materia
Daugavet points ∆-Points Points of continuity
Fecha
2024-04-22Referencia bibliográfica
Cobollo, C., Isert, D., López-Pérez, G. et al. Banach spaces with small weakly open subsets of the unit ball and massive sets of Daugavet and -points. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 96 (2024). [https://doi.org/10.1007/s13398-024-01596-x]
Patrocinador
MICIU/AEI/10.13039/501100011033; ERDF/EU: grant PID2021-122126NB-C31; Grant PID2021-122126NB-C33; Grants PID2019-105011GB-I00 and PID2022-139449NB-I00; Junta de Andalucía: grant FQM-0185; MCIU/AEI/10.13039/ 501100011033 and ERDF A way of making Europe: grant PGC2018-097286-B-I00; Project PROMETEU/2021/070 and the predoctoral contract CIACIF/2021/378); Universitat Politècnica de València; MICIU/AEI/10.13039/ 501100011033 Grant CEX2020-001105-M; Estonian Research Council grant SJD58; Spanish Ministerio de Universidades through a predoctoral contract FPU18/03057; French ANR project No. ANR-20-CE40-0006; MCIU and the European Social Fund through a “Contrato; Predoctoral para la Formación de Doctores, 2019” (PRE2019-089135); Instituto de Matemática Interdisciplinar (IMI); Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22; Generalitat Valenciana project CIGE/2022/97; Funding for open access publishing: Universidad de Granada/CBUAResumen
We prove that there exists an equivalent norm on
with the following properties:
(1)
The unit ball of
contains non-empty relatively weakly open subsets of arbitrarily small diameter;
(2)
The set of Daugavet points of the unit ball of
is weakly dense;
(3)
The set of ccw
-points of the unit ball of
is norming.
We also show that there are points of the unit ball of
which are not -points, meaning that the space fails the diametral local diameter 2 property. Finally, we observe that the space provides both alternative and new examples that illustrate the differences between the various diametral notions for points of the unit ball of Banach spaces.