Mostrar el registro sencillo del ítem

dc.contributor.authorPulecio Díaz, Julián
dc.contributor.authorDel Sol Sánchez, Miguel 
dc.contributor.authorMoreno Navarro, Fernando Manuel 
dc.date.accessioned2024-05-15T10:16:20Z
dc.date.available2024-05-15T10:16:20Z
dc.date.issued2024-01-23
dc.identifier.citationPulecio-Díaz, J.; Sol-Sánchez, M.; Moreno-Navarro, F. Influence of Service Conditions and Mix Design on the Physical– Mechanical Properties of Roller-Compacted Concrete for Pavement. Materials 2024, 17, 552. https://doi.org/10.3390/ma17030552es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91817
dc.description.abstractThis research focuses on the behavior of roller-compacted concrete (RCC) used in pavements, which are prone to deterioration affecting their performance. These deteriorations result from various causes, including traffic load, errors during construction, mix design, and ambient conditions. Among these, ambient conditions could lead to a marked variable impact on material behavior and durability depending on the conditions associated with each region. Accordingly, this study aims to deepen the understanding of the effect, which a broader range of ambient conditions and different mix designs have on the physical and mechanical properties of RCC. Measurements such as the amount of water vapor per kilogram of air were used to apply the findings comprehensively. The RCC analysis encompassed experimentation with different compositions, altering the cement water ratio amount, and adding a superplasticizer. The impact of curing on the materials was evaluated before subjecting them to various humidity and temperature conditions. Laboratory tests were conducted to measure performance, including moisture, shrinkage, compressive strength, and the progression of flexural fracture resistance over curing periods of up to 90 days. The results revealed a logarithmic correlation between shrinkage and ambient humidity, which is the most determining factor in performance. Mix optimization through increased cement and reduced water enhanced the tensile strength of the material. Furthermore, the curing process was confirmed to increase resistance to shrinkage, especially in the long term, establishing it as a crucial element for the structural stability of RCC, which is relatively insensitive to variations in ambient conditions.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPhysical–mechanical propertieses_ES
dc.subjectRelative humidityes_ES
dc.subjectRoller-compacted concretees_ES
dc.titleInfluence of Service Conditions and Mix Design on the Physical–Mechanical Properties of Roller-Compacted Concrete for Pavementes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/ma17030552
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional