Afficher la notice abrégée

dc.contributor.authorKharitonova, Ksenia
dc.contributor.authorPérez Fernández, David
dc.contributor.authorGutiérrez Hernando, Javier
dc.contributor.authorGutiérrez Fandiño, Asier
dc.contributor.authorCallejas Carrión, Zoraida 
dc.contributor.authorGriol Barres, David 
dc.date.accessioned2024-05-14T07:54:23Z
dc.date.available2024-05-14T07:54:23Z
dc.date.issued2024-03-03
dc.identifier.citationKsenia Kharitonova, David Pérez-Fernández, Javier Gutiérrez-Hernando, Asier Gutiérrez-Fandiño, Zoraida Callejas & David Griol (03 Mar 2024): Incorporating evidence into mental health Q&A: a novel method to use generative language models for validated clinical content extraction, Behaviour & Information Technology, DOI: 10.1080/0144929X.2024.2321959es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91737
dc.description.abstractGenerative language models have changed the way we interact with computers using natural language. With the release of increasingly advanced GPT models, systems are able to correctly respond to questions in various domains. However, they still have important limitations, such as hallucinations, lack of substance in answers, inability to justify responses, or showing high confidence with fabricated content. In digital mental health, every decision must be traceable and based on scientific evidence and these shortcomings are hindering the integration of LLMs into clinical practice. In this paper, we provide a novel automated method to develop evidencebased question answering systems. Powerful state-of-the-art generalist language models are used and forced to employ only contents in validated clinical guidelines, tracking the source of the evidence for each generated response. This way, the system is able to protect users from hallucinatory responses. As a proof of concept, we present the results obtained building question-answering systems circumscribed to the clinical practice guidelines of the Spanish National Health System about the management of depression and attention deficit hyperactivity disorder. The coherence, veracity, and evidence supporting the responses have been evaluated by human experts obtaining high reliability, clarity, completeness, and traceability of evidence results.es_ES
dc.description.sponsorship‘CONVERSA: Effective and efficient resources and models for transformative conversational AI in Spanish and co-official languages’ project with reference (Agencia Estatal de Investigación) TED2021- 132470B-I00, funded by MCIN/AEI/10.13039/501100011033 and by the European Union ‘NextGenerationEU/PRTR’es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation programme under grant agreement No 823907 (MENHIR, https://menhir-project.eu)es_ES
dc.language.isoenges_ES
dc.publisherTaylor & Francis Groupes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectQuestion-answeringes_ES
dc.subjectGenerative language modeles_ES
dc.subjectLarge language modeles_ES
dc.titleIncorporating evidence into mental health Q&A: a novel method to use generative language models for validated clinical content extractiones_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/TED2021- 132470B-I00es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/823907es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1080/0144929X.2024.2321959
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional