Zero-Field SMM Behavior Triggered by Magnetic Exchange Interactions and a Collinear Arrangement of Local Anisotropy Axes in a Linear Co3II Complex
Metadatos
Mostrar el registro completo del ítemAutor
Zabala Lekuona, Andoni; Landart Gereka, Aritz; Quesada Moreno, María del Mar; Mota Ávila, Antonio José; Díaz Ortega, Ismael Francisco; Nojiri, Hiroyuki; Krzystek, J.; Seco, José M.; Colacio Rodríguez, EnriqueEditorial
American Chemical Society
Fecha
2023-11-22Referencia bibliográfica
Andoni Zabala-Lekuona, Aritz Landart-Gereka, María Mar Quesada-Moreno, Antonio J. Mota, Ismael F. Díaz-Ortega, Hiroyuki Nojiri, Jurek Krzystek, José M. Seco, and Enrique Colacio Inorganic Chemistry 2023 62 (49), 20030-20041 DOI: 10.1021/acs.inorgchem.3c02817
Patrocinador
Ministerio de Ciencia e Innovación (Project PID2022-138090NB-C21); Junta de Andalucía (FQM-195 and project I+D+i P20_00692); University of Granada; GIMRT; ICCIMR; Junta de Andalucía for a postdoctoral fellowship (DOC_01282); Ministerio de Ciencia e Innovación for a Ramón y Cajal contract (the publication is part of grant RYC2021-034288-I, funded by MCIN/AEI/10.13039/501100011033 and the European Union ≪NextGenerationEU≫/PRTR≫); University of the Basque Country (GIU 17/13); Gobierno Vasco/Eusko Jaurlaritza (IT1755-22); Predoctoral fellowship from GV/EJ; NSF cooperative agreement no. DMR-2128556 and the State of FloridaResumen
A new linear trinuclear Co(II)3 complex with a formula of [{Co(μ-L)}2Co] has been prepared by self-assembly of Co(II) ions and the N3O3-tripodal Schiff base ligand H3L, which is obtained from the condensation of 1,1,1-tris(aminomethyl)ethane and salicylaldehyde. Single X-ray diffraction shows that this compound is centrosymmetric with triple-phenolate bridging groups connecting neighboring Co(II) ions, leading to a paddle-wheel-like structure with a pseudo-C3 axis lying in the Co−Co−Co direction. The Co(II) ions at both ends of the Co(II)3 molecule exhibit distorted trigonal prismatic CoN3O3 geometry, whereas the Co(II) at the middle presents an elongated trigonal antiprismatic CoO6 geometry. The combined analysis of the magnetic data and theoretical calculations reveal strong easy-axis magnetic anisotropy for both types of Co(II) ions (|D| values higher than 115 cm−1) with the local anisotropic axes lying on the pseudo-C3 axis of the molecule. The magnetic exchange interaction between the middle and ends Co(II) ions, extracted by using either a Hamiltonian accounting for the isotropic magnetic coupling and ZFS or the Lines’ model, was found to be medium to strong and antiferromagnetic in nature, whereas the interaction between the external Co(II) ions is weak antiferromagnetic. Interestingly, the compound exhibits slow relaxation of magnetization and open hysteresis at zero field and therefore SMM behavior. The significant magnetic exchange coupling found for [{Co(μ-L)}2Co] is mainly responsible for the quenching of QTM, which combined with the easy-axis local anisotropy of the CoII ions and the collinearity of their local anisotropy axes with the pseudo-C3 axis favors the observation of SMM behavior at zero field.