Mostrar el registro sencillo del ítem

dc.contributor.authorAkhtar, Mohammad Amir Khusru
dc.contributor.authorPradhan, Dinesh K.
dc.contributor.authorKumar Chatterjee, Rajesh
dc.contributor.authorChakraborty, Falguni
dc.contributor.authorKumar, Mohit
dc.contributor.authorVerma, Sahil
dc.contributor.authorKhurma, Ruba Abu
dc.contributor.authorGarcía Arenas, María Isabel 
dc.date.accessioned2024-05-10T10:36:16Z
dc.date.available2024-05-10T10:36:16Z
dc.date.issued2024-02-12
dc.identifier.citationChatterjee, R., Akhtar, M. A. K., Pradhan, D. K., Chakraborty, F., Kumar, M., Verma, S., ... & García-Arenas, M. (2024). FNN for diabetic prediction using oppositional whale optimization algorithm. IEEE Access.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91641
dc.description.abstractThe medical field is witnessing rapid adoption of artificial intelligence (AI) and machine learning (ML), revolutionizing disease diagnosis and treatment management. Researchers explore how AI and ML can optimize medical decision-making, promising to transform healthcare. Feed Forward Neural Networks (FNN) are widely used to create predictive disease models, cross-validated by medical experts. However, complex medical data like diabetes leads to multi-modal search spaces prone to local minima, affecting optimal solutions. In this study, we focus on optimizing a diabetes dataset from the Pima Indian community, evaluating decision-making performance in diabetes management. Employing multimodal datasets, we compare various optimization algorithms, including the Whale Optimization Algorithm (WOA) and Particle Swarm Optimization (PSO). The test results encompass essential metrics like best-fit value, mean, median, and standard deviation to assess the impact of different optimization techniques. The findings highlight the superiority of the Oppositional Whale Optimization Algorithm (OWOA) over other methods employed in our research setup. This study demonstrates the immense potential of AI and metaheuristic algorithms to revolutionize medical diagnosis and treatment approaches, paving the way for future advancements in the healthcare landscape. Results reveal the superiority of OWOA over other methods. AI and metaheuristics show tremendous potential in transforming medical diagnosis and treatment, driving future healthcare advancements.es_ES
dc.description.sponsorshipMinisterio Español de Ciencia e Innovación under Grant PID2020-115570GB-C22, Grant PID2022-137461NB-C31, and Grant MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipPrograma Operativo FEDER 2021-2027 under Grant C-ING-027-UGR23es_ES
dc.description.sponsorshipCátedra Fujitsu Tecnología para las Personas (UGR-Fujitsu)es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFeed forward neural network (FNN)es_ES
dc.subjectArtificial intelligence es_ES
dc.subjectWhale Optimization Algorithm (WOA)es_ES
dc.titleFNN for Diabetic Prediction Using Oppositional Whale Optimization Algorithmes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2024.3357993
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional