Afficher la notice abrégée

dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.contributor.authorCano Gutiérrez, Carlos 
dc.contributor.authorBaca Ruiz, Luis Gonzaga 
dc.contributor.authorServadei, Lorenzo
dc.date.accessioned2024-05-09T08:22:41Z
dc.date.available2024-05-09T08:22:41Z
dc.date.issued2023-11-27
dc.identifier.citationCuéllar, M.P., Cano, C., Ruiz, L.G.B. et al. Time series quantum classifiers with amplitude embedding. Quantum Mach. Intell. 5, 45 (2023). https://doi.org/10.1007/s42484-023-00133-0es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91574
dc.description.abstractQuantum Machine Learningwas born during the past decade as the intersection of Quantum Computing and Machine Learning. Today, advances in quantum computer hardware and the design of simulation frameworks able to run quantum algorithms in classic computers make it possible to extend classic artificial intelligence models to a quantum environment. Despite these achievements, several questions regarding the whole quantum machine learning pipeline remain unanswered, for instance the problem of classical data representation on quantum hardware, or the methodologies for designing and evaluating quantum models for common learning tasks such as classification, function approximation, clustering, etc. These problems become even more difficult to solve in the case of Time Series processing, where the context of past historical data may influence the behavior of the decision-making model. In this piece of research, we address the problem of Time Series classification using quantum models, and propose an efficient and compact representation of time series in quantum data using amplitude embedding. The proposal is capable of representing a time series of length n in log2(n) computational units, and experiments conducted on benchmark time series classification problems show that quantum models designed for classification can also outperform the accuracy of classic methods.es_ES
dc.description.sponsorshipProject QUANERGY (Ref. TED2021-129360B-I00), Ecological and Digital Transition R&D projects call 2022 by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTRes_ES
dc.description.sponsorshipGrant PID2021-128970OA-I00 funded by MCIN/AEI/10.13039/50110 0011033/FEDERes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectQuantum machine learninges_ES
dc.subjectTime series classificationes_ES
dc.subjectAmplitude embeddinges_ES
dc.titleTime series quantum classifiers with amplitude embeddinges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/TED2021-129360B-I00es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s42484-023-00133-0
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional