Mostrar el registro sencillo del ítem

dc.contributor.authorVera Vera, José Fernando 
dc.contributor.authorSubiabre, Ricardo
dc.contributor.authorMacías, Rodrigo
dc.date.accessioned2024-05-07T10:41:21Z
dc.date.available2024-05-07T10:41:21Z
dc.date.issued2024-01-30
dc.identifier.citationFernando Vera, J., Subiabre, R. & Macías, R. Clustering and Geodesic Scaling of Dissimilarities on the Spherical Surface. JABES (2024). https://doi.org/10.1007/s13253-023-00597-4es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91493
dc.description.abstractSpherical embedding is an important tool in several fields of data analysis, including environmental data, spatial statistics, text mining, gene expression analysis, medical research and, in general, areas in which the geodesic distance is a relevant factor. Many data acquisition technologies are related to massive data acquisition, and these highdimensional vectors are often normalised and transformed into spherical data. In this representation of data on spherical surfaces, multidimensional scaling plays an important role. Traditionally, the methods of clustering and representation have been combined, since the precision of the representation tends to decrease when a large number of objects are involved, which makes interpretation difficult. In this paper, we present a model that partitions objects into classes while simultaneously representing the cluster centres on a spherical surface based on geodesic distances. The model combines a partition algorithm based on the approximation of dissimilarities to geodesic distances with a representation procedure for geodesic distances. In this process, the dissimilarities are transformed in order to optimise the radius of the sphere. The efficiency of the procedure described is analysed by means of an extensive Monte Carlo experiment, and its usefulness is illustrated for real data sets.es_ES
dc.description.sponsorshipGrant RTI2018-099723-B-I00, Ministry of Science, Innovation and Universities of Spain, co-financed by FEDERes_ES
dc.description.sponsorshipGrant B-CTS-184-UGR20 funded by ERDF, EU/Ministry of Economic Transformation, Industry, Knowledge and Universities of Andalusiaes_ES
dc.description.sponsorshipAustral University of Chilees_ES
dc.description.sponsorshipThe Pacific Alliance Grant of the Carolina Foundationes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMultidimensional scalinges_ES
dc.subjectDissimilarityes_ES
dc.subjectGeodesic distancees_ES
dc.titleClustering and Geodesic Scaling of Dissimilarities on the Spherical Surfacees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s13253-023-00597-4
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional