Afficher la notice abrégée

dc.contributor.authorAngulo Ibáñez, José Miguel 
dc.contributor.authorRuiz Medina, María Dolores 
dc.date.accessioned2024-05-06T07:28:31Z
dc.date.available2024-05-06T07:28:31Z
dc.date.issued2023-09-17
dc.identifier.citationAngulo, J.M., Ruiz-Medina, M.D. Informational assessment of large scale self-similarity in nonlinear random field models. Stoch Environ Res Risk Assess 38, 17–31 (2024). https://doi.org/10.1007/s00477-023-02541-xes_ES
dc.identifier.urihttps://hdl.handle.net/10481/91388
dc.description.abstractLarge-scale behavior of a wide class of spatial and spatiotemporal processes is characterized in terms of informational measures. Specifically, subordinated random fields defined by nonlinear transformations on the family of homogeneous and isotropic Lancaster–Sarmanov random fields are studied under long-range dependence (LRD) assumptions. In the spatial case, it is shown that Shannon mutual information between random field components for infinitely increasing distance, which can be properly interpreted as a measure of large scale structural complexity and diversity, has an asymptotic power law decay that depends on the underlying LRD parameter scaled by the subordinating function rank. Sensitivity with respect to distortion induced by the deformation parameter under the generalized form given by divergence-based Re´nyi mutual information is also analyzed. In the spatiotemporal framework, a spatial infinite-dimensional random field approach is adopted. The study of the large-scale asymptotic behavior is then extended under the proposal of a functional formulation of the Lancaster–Sarmanov random field class, as well as of divergence-based mutual information. Results are illustrated, in the context of geometrical analysis of sample paths, considering some scenarios based on Gaussian and Chi- Square subordinated spatial and spatiotemporal random fields.es_ES
dc.description.sponsorshipGrants PID2021-128077NB-I00, PGC2018-098860-B-I00, PID2022-142900NB-I00, and PGC2018-099549-B-I00 funded by MCIN /AEI/10.13039/501100011033 / ERDF A way of making Europe, EUes_ES
dc.description.sponsorshipGrant CEX2020-001105-M funded by MCIN / AEI/10.13039/ 501100011033es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Granada/ CBUA.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLancaster–Sarmanov random field modelses_ES
dc.subjectSubordinated random fieldses_ES
dc.subjectInformation measureses_ES
dc.titleInformational assessment of large scale self-similarity in nonlinear random field modelses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00477-023-02541-x
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional