• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LRD spectral analysis of multifractional functional time series on manifolds

[PDF] Artículo principal (2.171Mb)
[PDF] Material Suplementario (57.42Mb)
Identificadores
URI: https://hdl.handle.net/10481/91256
DOI: 10.1007/s11749-023-00913-7
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Ovalle Muñoz, Diana Paola; Ruiz Medina, María Dolores
Editorial
Springer Nature
Materia
Connected and compact two--point homogeneous spaces
 
Ibragimov contrast function
 
LRD multifractionally integrated functional time series
 
Manifold cross-time RFs
 
Multifractional spherical stochastic partial differential equations
 
Date
2024-01-12
Referencia bibliográfica
Ovalle–Muñoz, D.P., Ruiz–Medina, M.D. LRD spectral analysis of multifractional functional time series on manifolds. TEST (2024). https://doi.org/10.1007/s11749-023-00913-7
Sponsorship
MCIN/ AEI/PID2022-142900NB-I00; CEX2020-001105-M MCIN/ AEI/10.13039/501100011033; Universidad de Granada/CBUA
Abstract
This paper addresses the estimation of the second-order structure of a manifold cross-time random field (RF) displaying spatially varying Long Range Dependence (LRD), adopting the functional time series framework introduced in Ruiz-Medina (2022). Conditions for the asymptotic unbiasedness of the integrated periodogram operator in the Hilbert--Schmidt operator norm are derived beyond structural assumptions. Weak--consistent estimation of the long--memory operator is achieved under a semiparametric functional spectral framework in the Gaussian context. The case where the projected manifold process can display Short Range Dependence (SRD) and LRD at different manifold scales is also analyzed. The performance of both estimation procedures is illustrated in the simulation study, in the context of multifractionally integrated spherical functional autoregressive--moving average (SPHARMA(p,q)) processes.
Collections
  • DEIO - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback