Mostrar el registro sencillo del ítem

dc.contributor.authorOrtiz Rivero, Elisa
dc.contributor.authorOrozco Barrera, Sergio
dc.contributor.authorChatterjee, Hirak
dc.contributor.authorGonzález Gómez, Carlos D.
dc.contributor.authorCaro, Carlos
dc.contributor.authorGarcía Martín, María Luisa
dc.contributor.authorHaro González, Patricia
dc.contributor.authorRica Alarcón, Raúl Alberto 
dc.contributor.authorGámez Márquez, Francisco 
dc.date.accessioned2024-04-29T08:17:21Z
dc.date.available2024-04-29T08:17:21Z
dc.date.issued2023-12-04
dc.identifier.citationElisa Ortiz-Rivero, Sergio Orozco-Barrera, Hirak Chatterjee, Carlos D. González-Gómez, Carlos Caro, María-Luisa García-Martín, Patricia Haro González, Raúl A. Rica, and Francisco Gámez. ACS Nano. 2023 17 (24), 24961-24971. DOI: 10.1021/acsnano.3c07086es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91239
dc.description.abstractAnisotropic hybrid nanostructures stand out as promising therapeutic agents in photothermal conversion-based treatments. Accordingly, understanding local heat generation mediated by light-to-heat conversion of absorbing multicomponent nanoparticles at the single-particle level has forthwith become a subject of broad and current interest. Nonetheless, evaluating reliable temperature profiles around a single trapped nanoparticle is challenging from all of the experimental, computational, and fundamental viewpoints. Committed to filling this gap, the heat generation of an anisotropic hybrid nanostructure is explored by means of two different experimental approaches from which the local temperature is measured in a direct or indirect way, all in the context of hot Brownian motion theory. The results were compared with analytical results supported by the numerical computation of the wavelength-dependent absorption efficiencies in the discrete dipole approximation for scattering calculations, which has been extended to inhomogeneous nanostructures. Overall, we provide a consistent and comprehensive view of the heat generation in optical traps of highly absorbing particles from the viewpoint of the hot Brownian motion theory.es_ES
dc.description.sponsorshipGrants PID2022-136919NA-C33, PID2019-106211RB-I00 (NANONERV), PID2021-127427NB-I00, PID2020-118448RBC21, PID2019-105195RA-I00, funded by the Ministerio de Ciencia e Innovación of Spain MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipGrant CNS2022-135495, and TED2021-129937B-I00, funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorship“European Union NextGenerationEU/PRTR” from the Ministerio de Economía, Industria y Competitividad of Spain (grant CTQ2017-86655-R) and from FEDER/Consejería de Transformación Económica, Industria, Conocimiento y Universidades of Andalucía (grants P18-FR-3583 and P20_00727/PAIDI2020)es_ES
dc.description.sponsorshipHORIZON-MSCA-2021-PF-01 grant agreement ID: 101065163es_ES
dc.description.sponsorshipSpanish Ministerio de Universidades, through the FPU program (FPU19/04803)es_ES
dc.description.sponsorshipConsejería de Salud y Familias (Junta de Andalucía) for his senior postdoctoral grant (RH-0040-2021)es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectOptical tweezerses_ES
dc.subjectHybrid nanostructureses_ES
dc.subjectHeat generationes_ES
dc.titleLight-to-Heat Conversion of Optically Trapped Hot Brownian Particleses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/CTQ2017-86655-Res_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/MSC 101065163es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1021/acsnano.3c07086
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional