• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Modelización y Predicción con Datos Funcionales (FQM307)
  • FQM307 - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Modelización y Predicción con Datos Funcionales (FQM307)
  • FQM307 - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Different PCA approaches for vector functional time series with applications to resistive switching processes

[PDF] Artículo (2.217Mb)
Identificadores
URI: https://hdl.handle.net/10481/91206
DOI: https://doi.org/10.1016/j.matcom.2024.04.017
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Acal González, Christian José; Aguilera Del Pino, Ana María; Alonso, Francisco Javier; Ruiz-Castro, Juan Eloy; Roldán Aranda, Juan Bautista
Editorial
Elsevier
Fecha
2024-04-27
Referencia bibliográfica
Mathematics and Computers in Simulation, 223 (2024) 288-298
Patrocinador
Universidad de Granada / CBUA
Resumen
This paper is motivated by modeling the cycle-to-cycle variability associated with the resistive switching operation behind memristors. Although the data generated by this stochastic process are by nature current–voltage curves associated with the creation (set process) and destruction (reset process) of a conductive filament, the statistical analysis is usually based on analyzing only the scalar time series related to the reset and set voltages/currents in consecutive cycles. As the data are by nature curves, functional principal component analysis is a suitable candidate to explain the main modes of variability associated with these processes. Taking into account this data-driven motivation, in this paper we propose two new forecasting approaches based on studying the sequential cross-dependence between and within a multivariate functional time series in terms of vector autoregressive modeling of the most explicative functional principal component scores. The main difference between the two methods lies in whether a univariate or multivariate PCA is performed so that we have a different set of principal component scores for each functional time series or the same one for all of them. Finally, the sample performance of the proposed methodologies is illustrated by an application on a bivariate functional time series of reset/set curves.
Colecciones
  • FQM307 - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias