Mostrar el registro sencillo del ítem
Flexible Laser-Induced Graphene Memristor: Fabrication and SPICE based Emulation of an Artificial Neural Network
dc.contributor.author | García Palomo, Mikel | |
dc.contributor.author | Ganeriwala, Mohit Dineshkumar | |
dc.contributor.author | Fernández-Sánchez, María del Carmen | |
dc.contributor.author | Motos-Espada, Roberto | |
dc.contributor.author | González Marín, Enrique | |
dc.contributor.author | Ruiz, Francisco G. | |
dc.contributor.author | Godoy Medina, Andrés | |
dc.date.accessioned | 2024-04-23T10:09:48Z | |
dc.date.available | 2024-04-23T10:09:48Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Published version: García Palomo, Mikel et al. Flexible Laser-Induced Graphene Memristor: Fabrication and SPICE based Emulation of an Artificial Neural Network. 2024 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/91076 | |
dc.description | Project PID2020-116518GB-I00 funded by MCIN/AEI/10.13039/501100011033; and TED2021-129769B-I00 FlexPowHar and CNS2023-143727 RECAMBIO both funded by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR. This work also acknowledges the research project P21 00149 ENERGHENE funded by the University, Research and Innovation Council of the Board of Andalusia. M. D. Ganeriwala ac- knowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101032701. | es_ES |
dc.description.abstract | This work demonstrates laser-induced graphene memristors, fabricated using a patterning-free, low cost and simple process directly on a flexible polyimide substrate. The fabricated memristors show repeatable non-volatile bipolar resistive switching with state retention up to 103 seconds. A simple perceptron network for the classification of black-and-white images is later implemented using an experimentally extracted compact model. Successful training of the network by integrating SPICE model with MATLAB shows the possibility to emulate the on-chip learning process. Further, by properly modulating the applied voltage pulse amplitude and period, a reduction in the energy consumed by training the neural network is achieved. | es_ES |
dc.description.sponsorship | MCIN/AEI/10.13039/501100011033: PID2020-116518GB-I00, TED2021-129769B-I00 FlexPowHar, CNS2023-143727 RECAMBIO | es_ES |
dc.description.sponsorship | European Union NextGenerationEU/PRTR | es_ES |
dc.description.sponsorship | University, Research and Innovation Council of the Board of Andalusia P21 00149 ENERGHENE | es_ES |
dc.description.sponsorship | European Union's Horizon 2020 No. 101032701 | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | es_ES |
dc.title | Flexible Laser-Induced Graphene Memristor: Fabrication and SPICE based Emulation of an Artificial Neural Network | es_ES |
dc.type | conference output | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101032701 | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.type.hasVersion | SMUR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
DETC - Comunicaciones Congresos, Conferencias, ...
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.