Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Palomo, Mikel
dc.contributor.authorGaneriwala, Mohit Dineshkumar
dc.contributor.authorFernández-Sánchez, María del Carmen
dc.contributor.authorMotos-Espada, Roberto
dc.contributor.authorGonzález Marín, Enrique 
dc.contributor.authorRuiz, Francisco G.
dc.contributor.authorGodoy Medina, Andrés 
dc.date.accessioned2024-04-23T10:09:48Z
dc.date.available2024-04-23T10:09:48Z
dc.date.issued2024
dc.identifier.citationPublished version: García Palomo, Mikel et al. Flexible Laser-Induced Graphene Memristor: Fabrication and SPICE based Emulation of an Artificial Neural Network. 2024es_ES
dc.identifier.urihttps://hdl.handle.net/10481/91076
dc.descriptionProject PID2020-116518GB-I00 funded by MCIN/AEI/10.13039/501100011033; and TED2021-129769B-I00 FlexPowHar and CNS2023-143727 RECAMBIO both funded by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR. This work also acknowledges the research project P21 00149 ENERGHENE funded by the University, Research and Innovation Council of the Board of Andalusia. M. D. Ganeriwala ac- knowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101032701.es_ES
dc.description.abstractThis work demonstrates laser-induced graphene memristors, fabricated using a patterning-free, low cost and simple process directly on a flexible polyimide substrate. The fabricated memristors show repeatable non-volatile bipolar resistive switching with state retention up to 103 seconds. A simple perceptron network for the classification of black-and-white images is later implemented using an experimentally extracted compact model. Successful training of the network by integrating SPICE model with MATLAB shows the possibility to emulate the on-chip learning process. Further, by properly modulating the applied voltage pulse amplitude and period, a reduction in the energy consumed by training the neural network is achieved.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033: PID2020-116518GB-I00, TED2021-129769B-I00 FlexPowHar, CNS2023-143727 RECAMBIOes_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.description.sponsorshipUniversity, Research and Innovation Council of the Board of Andalusia P21 00149 ENERGHENEes_ES
dc.description.sponsorshipEuropean Union's Horizon 2020 No. 101032701es_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.titleFlexible Laser-Induced Graphene Memristor: Fabrication and SPICE based Emulation of an Artificial Neural Networkes_ES
dc.typeconference outputes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101032701es_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License