Mostrar el registro sencillo del ítem

dc.contributor.authorBülte, Christopher
dc.contributor.authorKleinebrahm, Max
dc.contributor.authorYilmaz, Hasan Ümitcan
dc.contributor.authorGómez Romero, Juan 
dc.date.accessioned2024-04-10T11:46:37Z
dc.date.available2024-04-10T11:46:37Z
dc.date.issued2023
dc.identifier.citationEnergy and AI 13 (2023) 100239 [10.1016/j.egyai.2023.100239]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/90619
dc.description.abstractMultivariate time series with missing values are common in a wide range of applications, including energy data. Existing imputation methods often fail to focus on the temporal dynamics and the cross-dimensional correlation simultaneously. In this paper we propose a two-step method based on an attention model to impute missing values in multivariate energy time series. First, the underlying distribution of the missing values in the data is learned. This information is then further used to train an attention based imputation model. By learning the distribution prior to the imputation process, the model can respond flexibly to the specific characteristics of the underlying data. The developed model is applied to European energy data, obtained from the European Network of Transmission System Operators for Electricity. Using different evaluation metrics and benchmarks, the conducted experiments show that the proposed model is preferable to the benchmarks and is able to accurately impute missing values.es_ES
dc.description.sponsorshipProject IA4TES (MIA.2021.M04.0008, funded by the European Union – NextGenerationEU)es_ES
dc.description.sponsorshipProject DeepSim (A.TIC.244.UGR20, funded by FEDER, Spain – Junta de Andalucía)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMissing value estimationes_ES
dc.subjectMultivariate time serieses_ES
dc.subjectNeural networkses_ES
dc.titleMultivariate time series imputation for energy data using neural networkses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/MIA.2021.M04.0008es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.egyai.2023.100239
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional