Afficher la notice abrégée

dc.contributor.authorPolo Rodríguez, Aurora
dc.contributor.authorCavallo, Filippo
dc.contributor.authorNugent, Christopher
dc.contributor.authorMedina Quero, Javier
dc.date.accessioned2024-04-10T11:34:05Z
dc.date.available2024-04-10T11:34:05Z
dc.date.issued2024
dc.identifier.citationInternet of Things 25 (2024) 101018 [10.1016/j.iot.2023.101018]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/90612
dc.description.abstractMultioccupation encompasses real-life environments in which people interact in the same common space. Recognizing activities in this context for each inhabitant has been challenging and complex. This work presents a fuzzy knowledge-based system for mining human activities in multi-occupancy contexts based on nearby interaction based on the Ultra-wideband. First, interest zone spatial location is modelled using a straightforward fuzzy logic approach, enabling discriminating short-term event interactions. Second, linguistic protoforms use fuzzy rules to describe long-term events for mining human activities in a multi-occupancy context. A data set with multimodal sensors has been collected and labelled to exhibit the application of the approach. The results show an encouraging performance (0.9 precision) in the discrimination of multiple occupations.es_ES
dc.description.sponsorshipSpanish Institute of Health ISCIII through the project DTS21-00047es_ES
dc.description.sponsorshipEDUJA (Doctoral School of the University of Jaén) grant for research stays aimed at obtaining an international mention in the doctorate, developed at the University of Florence.es_ES
dc.description.sponsorshipEU Horizon 2020 Pharaon Project ‘Pilots for Healthy and Active Ageing’, Grant agreement no. 857188es_ES
dc.description.sponsorshipThe funding for covering the open access charge has been provided by University of Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMulti-occupancyes_ES
dc.subjectNearby interactiones_ES
dc.subjectHuman activity recognitiones_ES
dc.titleHuman activity mining in multi-occupancy contexts based on nearby interaction under a fuzzy approaches_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/857188es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.iot.2023.101018
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional