Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz de Miras, Juan 
dc.contributor.authorGacto Colorado, María José
dc.contributor.authorBlanc García, María Rosario 
dc.contributor.authorArroyo Moreno, Germán 
dc.contributor.authorLópez Escudero, Luis
dc.contributor.authorTorres Cantero, Juan Carlos 
dc.contributor.authorMartín Perandrés, Domingo 
dc.date.accessioned2024-04-05T06:56:35Z
dc.date.available2024-04-05T06:56:35Z
dc.date.issued2024-05-15
dc.identifier.citationJuan Ruiz de Miras, María José Gacto, María Rosario Blanc, Germán Arroyo, Luis López, Juan Carlos Torres, Domingo Martín, Machine learning regression algorithms for generating chemical element maps from X-ray fluorescence data of paintings, Chemometrics and Intelligent Laboratory Systems, Volume 248, 2024, 105116, ISSN 0169-7439, https://doi.org/10.1016/j.chemolab.2024.105116es_ES
dc.identifier.urihttps://hdl.handle.net/10481/90401
dc.description.abstractGenerating chemical element maps of paintings from X-ray fluorescence (XRF) data is a very valuable tool for the scientific community of conservators and art historians. Hand-held XRF scanners are cheap and easily portable but their use provides scans with a few data, so additional analytical tools are needed to obtain reliable chemical element maps from them. Recently, the software tool SmART_Scan was released, which uses an algorithm based on the minimum hypercube distance (MHD) to compute this kind of maps. In this paper, we propose a new methodology to address this problem by using machine learning algorithms for regression as alternative and more accurate techniques than MHD. We tested MHD versus eight machine learning regression algorithms on two paintings with different features. Our results showed that machine learning algorithms Random Forest and kNN significantly outperformed MHD in Mean Squared Error (MSE) and coefficient of determination (R2) for all the experiments. When using experts’ data and a hold-out validation, kNN was the best-ranked algorithm. Random Forest was the best-ranked algorithm when cross-validation was used. We did not find significant differences in average MSE nor in R2 between kNN and Random Forest, so we can conclude that Random Forest is the best-suited algorithm for computing chemical element maps of paintings from XRF data.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectMachine learninges_ES
dc.subjectRandom forestes_ES
dc.subjectRegression problemes_ES
dc.subjectX-ray fluorescencees_ES
dc.subjectChemical element mapses_ES
dc.titleMachine learning regression algorithms for generating chemical element maps from Xray fluorescence data of paintingses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.chemolab.2024.105116


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NoDerivatives 4.0 Internacional