Mostrar el registro sencillo del ítem

dc.contributor.authorJiménez Mesa, Carmen 
dc.contributor.authorArco Martín, Juan Eloy 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorSuckling, John
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2024-04-03T06:52:05Z
dc.date.available2024-04-03T06:52:05Z
dc.date.issued2023
dc.identifier.citationPharmacological Research 197 (2023) 106984 [10.1016/j.phrs.2023.106984]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/90326
dc.description.abstractThe integration of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging techniques with machine learning (ML) algorithms, including deep learning (DL) models, is a promising approach. This integration enhances the precision and efficiency of current diagnostic and treatment strategies while offering invaluable insights into disease mechanisms. In this comprehensive review, we delve into the transformative impact of ML and DL in this domain. Firstly, a brief analysis is provided of how these algorithms have evolved and which are the most widely applied in this domain. Their different potential applications in nuclear imaging are then discussed, such as optimization of image adquisition or reconstruction, biomarkers identification, multimodal fusion and the development of diagnostic, prognostic, and disease progression evaluation systems. This is because they are able to analyse complex patterns and relationships within imaging data, as well as extracting quantitative and objective measures. Furthermore, we discuss the challenges in implementation, such as data standardization and limited sample sizes, and explore the clinical opportunities and future horizons, including data augmentation and explainable AI. Together, these factors are propelling the continuous advancement of more robust, transparent, and reliable systems.es_ES
dc.description.sponsorshipGrant RYC2021-030875-Ies_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.description.sponsorshipGrant PID2022-137629OA-I00es_ES
dc.description.sponsorshipGrant PID2022-137451OB-I00es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipFSE+es_ES
dc.description.sponsorshipSpanish Ministry of Universities under FPU 18/04902es_ES
dc.description.sponsorshipSpanish Ministry of Universities under Margarita Salases_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectDeep Learninges_ES
dc.subjectDiagnosis es_ES
dc.subjectMachine Learninges_ES
dc.titleApplications of machine learning and deep learning in SPECT and PET imaging: General overview, challenges and future prospectses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.phrs.2023.106984
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional