Mostrar el registro sencillo del ítem

dc.contributor.authorHernández González, Israel Alejandro
dc.contributor.authorGarcía Macías, Enrique 
dc.contributor.authorConstante, Gabriele
dc.contributor.authorUbertini, Filippo
dc.date.accessioned2024-03-06T08:01:24Z
dc.date.available2024-03-06T08:01:24Z
dc.date.issued2024-04-01
dc.identifier.citationHernández-González, I. A., García-Macías, E., Costante, G., & Ubertini, F. (2024). AI-driven blind source separation for fast operational modal analysis of structures. Mechanical Systems and Signal Processing, 211, 111267. https://doi.org/10.1016/j.ymssp.2024.111267es_ES
dc.identifier.urihttps://hdl.handle.net/10481/89814
dc.descriptionThis work has been supported by the Spanish Ministry of Science and Innovation through the research project ‘‘BRIDGEXT - Life-extension of ageing bridges: Towards a long-term sustainable Structural Health Monitoring’’ (Ref. PID2020-116644RB-I00). F. Ubertini also acknowledges the support of the Italian Ministry of University and Research (MUR) through the funded project ‘‘TIMING - Tine evolution laws for improving the structural reliability evaluation of existing post-tensioned concrete deck Bridges’’ within the PNRR PRIN2022 Call (Proj. P2022 3Y947). Funding for open access charge: Universidad de Granada / CBUA.es_ES
dc.description.abstractThe management of the aging built infrastructure stands as a paramount concern on the political agendas worldwide, bearing far-reaching socio-economic impacts. The growing trend of tragic collapses in recent years underscore the urgent need for efficient structural health maintenance (SHM) strategies to support decision-making in prioritizing intervention and rehabilitation actions. Vibration-based SHM systems utilizing Operational Modal Analysis (OMA) have gained popularity owing to their non-destructive nature, global damage assessment capabilities, and relatively straightforward automation with minimal intrusiveness. Nevertheless, state-of-the-art OMA techniques often face significant scalability limitations, primarily driven by extensive computational requirements and need for substantial expert involvement. In this context, recent advances in the realm of artificial intelligence (AI) offer great promise in addressing these scalability issues, paving the way for next-generation SHM systems. In this light, this work introduces a novel Multitask Learning Deep Neural Network (MTL-DNN) model designed for fast and automated blind source modal identification of structures. By encapsulating the principles of second-order blind source identification (SOBI) within the network’s architecture, the proposed model can extract the complex-valued modal components concealed within input raw response acceleration data. This enables the direct extraction of complex-valued mode shapes from the weights of the network, and the corresponding resonant frequencies and damping ratios are estimated through a computationally light single-degree-of-freedom identification algorithm. The efficacy of the presented approach is validated through three case studies: a theoretical non-proportionally damped system, a laboratory steel frame structure, and a real-world reinforced concrete arch bridge. The presented results demonstrate the capability of the proposed technique to conduct near-instantaneous automated modal identification with minimal expert intervention, holding great potential as a scalable technique for SHM of large infrastructural systems.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovation PID2020-116644RB-I00es_ES
dc.description.sponsorshipItalian Ministry of University and Research P2022 3Y947es_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectArtificial intelligence es_ES
dc.subjectBlind source identificationes_ES
dc.subjectDamage identificationes_ES
dc.subjectDeep Neural Networkses_ES
dc.subjectOperational Modal Analysises_ES
dc.subjectStructural Health Monitoringes_ES
dc.titleAI-driven blind source separation for fast operational modal analysis of structureses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ymssp.2024.111267
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional