Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Moreno, Práxedes
dc.contributor.authorValsecchi, Andrea
dc.contributor.authorDamas Arroyo, Sergio 
dc.contributor.authorIrurita Olivares, Javier 
dc.contributor.authorMesejo Santiago, Pablo 
dc.date.accessioned2024-02-26T08:57:48Z
dc.date.available2024-02-26T08:57:48Z
dc.date.issued2024-02-24
dc.identifier.citationMartínez-Moreno, P., Valsecchi, A., Damas, S., Irurita, J., & Mesejo, P. (2024). Information fusion for infant age estimation from deciduous teeth using machine learning. American Journal of Biological Anthropology, e24912. https://doi.org/10.1002/ajpa.24912es_ES
dc.identifier.urihttps://hdl.handle.net/10481/89547
dc.description.abstractOver the past few years, several methods have been proposed to improve the accuracy of age estimation in infants with a focus on dental development as a reliable marker. However, traditional approaches have limitations in efficiently combining information from different teeth and features. In order to address these challenges, this article presents a study on age estimation in infants with Machine Learning (ML) techniques, using deciduous teeth. The involved dataset comprises 114 infant skeletons from the Granada osteological collection of identified infants, aged between 5 months of gestation and 3 years of age. The samples consist of features such as the maximum length and mineralization and alveolar stages of teeth. For the purpose of designing a method capable of combining all the information available from each individual, a Multilayer Perceptron model is proposed, one of the most popular artificial neural networks. This model has been validated using the leave-one-out experimental validation protocol. Through different groups of experiments, the study examines the informativeness of the aforementioned features, individually and in combination. The results indicate that the fusion of different variables allows for more accurate age estimates (RMSE = 66 days) than when variables are analyzed separately (RMSE = 101 days). Additionally, the study demonstrates the benefits of involving multiple teeth, which significantly reduces the RMSE compared to a single tooth. This article underlines the clear advantages of ML-based methods, emphasizing their potential to improve the accuracy and robustness when estimating the age of infants.es_ES
dc.description.sponsorshipGrant CONFIA (PID2021-122916NB-I00) funded by MCIU/AEI/10.13039/501100011033 and “ERDF A way of making Europe”es_ES
dc.description.sponsorshipGrant FORAGE (B-TIC-456-UGR20) funded by Consejería de Universidad, Investigación e Innovación and “ERDF A way of making Europe”es_ES
dc.description.sponsorshipGrant Skeleton-ID2.0 (2021/C005/00141299) funded by Red.eses_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherDr. Trudy Turner, University of Wisconsin-Milwaukee, USAes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial Intelligencees_ES
dc.subjectInfant Age Estimationes_ES
dc.subjectInformation Fusiones_ES
dc.subjectMachine Learninges_ES
dc.subjectPhysical Anthropology es_ES
dc.titleInformation fusion for infant age estimation from deciduous teeth using machine learninges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/ajpa.24912
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional