• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Filologías Inglesa y Alemana
  • DFIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Filologías Inglesa y Alemana
  • DFIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-aspect multilingual and cross-lingual parliamentary speech analysis

[PDF] IDA (6).pdf (463.9Ko)
Identificadores
URI: https://hdl.handle.net/10481/89164
DOI: 10.3233/ida-227347
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Miok, Kristian; Hidalgo Tenorio, Encarnación; Osenova, Petya; Benítez Castro, Miguel Ángel; Robnik-Šikonja, Marko
Materia
Parliamentary debates
 
Natural language processing
 
Deep learning
 
Topic modelling
 
Date
2023
Referencia bibliográfica
Published version: Miok, Kristian et al. ‘Multi-aspect Multilingual and Cross-lingual Parliamentary Speech Analysis’. 1 Jan. 2023 : 1 – 22. https://doi.org/10.3233/ida-227347
Patrocinador
COST (European Cooperation in Science and Technology); Slovenian Research Agency P6-0411, J6-2581, J7-3159, V5-2297; European Social Fund; Andalusian Government; University of Granada (A-HUM-250-UGR18 & P18-FR-5020); CLaDA-BG DO01-377/18.12.2020
Résumé
Parliamentary and legislative debate transcripts provide an informative insight into elected politicians’ opinions, positions, and policy preferences. They are interesting for political and social sciences as well as linguistics and natural language processing (NLP) research. While exiting research studied individual parliaments, we apply advanced NLP methods to a joint and comparative analysis of six national parliaments (Bulgarian, Czech, French, Slovene, Spanish, and United Kingdom) between 2017 and 2020. We analyze emotions and sentiment in the transcripts from the ParlaMint dataset collection, and assess if the age, gender, and political orientation of speakers can be detected from their speeches. The results show some commonalities and many surprising differences among the analyzed countries.
Colecciones
  • DFIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire