Nonlinear Ultrasonics for Early Damage Detection
Metadatos
Mostrar el registro completo del ítemAutor
Muñoz Beltrán, Rafael; Rus Carlborg, Guillermo; Bochud, Nicolás; Barnard, Daniel J.; Melchor Rodríguez, Juan Manuel; Chiachío Ruano, Juan; Chiachío Ruano, Manuel; Cantero Chinchilla, Sergio; Callejas Zafra, Antonio Manuel; Peralta, Laura; Bond, Leonard J.Editorial
IGI Global
Fecha
2019-09Referencia bibliográfica
Munoz, R., Rus, G., Bochud, N., Barnard, D. J., Melchor, J., Ruano, J. C., Chiachío, M., Cantero, S., Callejas, A. M., Peralta, L. M., & Bond, L. J. (2020). Nonlinear Ultrasonics for Early Damage Detection. In I. Management Association (Ed.), Virtual and Mobile Healthcare: Breakthroughs in Research and Practice (pp. 697-732). IGI Global. https://doi.org/10.4018/978-1-5225-9863-3.ch034
Patrocinador
Laboratorio de Evaluación No Destructiva. Departamento de Mecánica de Estructuras e Ingeniería Hidráulica. Universidad de GranadaResumen
Structural Health Monitoring (SHM) is an emerging discipline that aims at improving the management of the life cycle of industrial components. The scope of this chapter is to present the integration of nonlinear ultrasonics with the Bayesian inverse problem as an appropriate tool to estimate the updated health state of a component taking into account the associated uncertainties. This updated information can be further used by prognostics algorithms to estimate the future damage stages. Nonlinear ultrasonics allows an early detection of damage moving forward the achievement of reliable predictions, while the inverse problem emerges as a rigorous method to extract the slight signature of early damage inside the experimental signals using theoretical models. The Bayesian version of the inverse problem allows measuring the underlying uncertainties, improving the prediction process. This chapter presents the fundamentals of nonlinear ultrasonics, their practical application for SHM, and the Bayesian inverse problem as a method to unveil damage and manage uncertainty.