Nonlinear Ultrasonics for Early Damage Detection
Identificadores
URI: https://hdl.handle.net/10481/88996ISSN: 2326-6139
ISBN: 9781466684904
ISBN: 9781466684911
Metadata
Show full item recordAuthor
Muñoz Beltrán, Rafael; Rus Carlborg, Guillermo; Bochud, Nicolás; Barnard, Daniel J.; Melchor Rodríguez, Juan Manuel; Chiachío Ruano, Juan; Chiachío Ruano, Manuel; Cantero Chinchilla, Sergio; Callejas Zafra, Antonio Manuel; Peralta, Laura; Bond, Leonard J.Editorial
IGI Global
Date
2015-10Referencia bibliográfica
Munoz, R., Rus, G., Bochud, N., Barnard, D. J., Melchor, J., Ruano, J. C., Chiachío, M., Cantero, S., Callejas, A. M., Peralta, L. M., & Bond, L. J. (2015). Nonlinear Ultrasonics for Early Damage Detection. In D. Burgos, L. Mujica, & J. Rodellar (Eds.), Emerging Design Solutions in Structural Health Monitoring Systems (pp. 171-206). IGI Global. https://doi.org/10.4018/978-1-4666-8490-4.ch009
Sponsorship
Laboratorio de Evaluación No Destructiva. Dpto. Mecánica de Estructuras e Ingeniería Hidráulica. Universidad de GranadaAbstract
Structural Health Monitoring (SHM) is an emerging discipline that aims at improving the management
of the life cycle of industrial components. The scope of this chapter is to present the integration of
nonlinear ultrasonics with the Bayesian inverse problem as an appropriate tool to estimate the updated
health state of a component taking into account the associated uncertainties. This updated information
can be further used by prognostics algorithms to estimate the future damage stages. Nonlinear ultrasonics
allows an early detection of damage moving forward the achievement of reliable predictions, while
the inverse problem emerges as a rigorous method to extract the slight signature of early damage inside
the experimental signals using theoretical models. The Bayesian version of the inverse problem allows
measuring the underlying uncertainties, improving the prediction process. This chapter presents the
fundamentals of nonlinear ultrasonics, their practical application for SHM, and the Bayesian inverse
problem as a method to unveil damage and manage uncertainty.