Criteria for optimizing kernel methods in fault monitoring process: A survey
Metadatos
Mostrar el registro completo del ítemAutor
Llanes Santiago, Orestes; Bernal de Lázaro, José M.; Silva Neto, Antônio J.; Cruz Corona, Carlos AlbertoEditorial
Elsevier
Fecha
2022Referencia bibliográfica
José M. Bernal-de-Lázaro, Carlos Cruz Corona, Antônio J. Silva-Neto, Orestes Llanes-Santiago, Criteria for optimizing kernel methods in fault monitoring process: A survey, ISA Transactions, Volume 127, 2022, Pages 259-272
Patrocinador
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (Finance Code 001 and CAPES-PRINT Process No. 88881.311758/2018-01); ARIA- National Program of Research and Innovation, Project No. 27, CITMA, Cuba; Asociación Universitaria Iberoamericana de Postgrado (AUIP); Fundação Carlos Chagas Filho de Amparo a Pesquísa do Estado do Rio de Janeiro (FAPERJ), Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil; Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE), CubaResumen
Nowadays, how to select the kernel function and their parameters for ensuring high-performance indicators in fault diagnosis applications remains as two open research issues. This paper provides a comprehensive literature survey of kernel-preprocessing methods in condition monitoring tasks, with emphasis on the procedures for selecting their parameters. Accordingly, twenty kernel optimization criteria and sixteen kernel functions are analyzed. A kernel evaluation framework is further provided for helping in the selection and adjustment of kernel functions. The proposal is validated via a KPCA-based monitoring scheme and two well-known benchmark processes.