Mostrar el registro sencillo del ítem

dc.contributor.authorCruz Corona, Carlos
dc.contributor.authorC. S. Jardim, Lucas
dc.contributor.authorC. Knupp, Diego
dc.contributor.authorP. Domingos, Roberto
dc.contributor.authorAbreu, Luiz Alberto
dc.contributor.authorSilva Neto, Antônio J.
dc.date.accessioned2024-02-08T11:24:07Z
dc.date.available2024-02-08T11:24:07Z
dc.date.issued2022
dc.identifier.citationJardim L.C.S., Knupp D.C., Domingos R.P., Abreu L.A.S., Corona Cruz.C., Neto A.J.S. Contact Failure Identification in Multilayered Media via Artificial Neural Networks and Autoencoders (2022), 94. PUBLISHER: Academia Brasileira de Ciencias. ISSN: 00013765 OPEN ACCESS: All Open Access; Gold Open Accesses_ES
dc.identifier.urihttps://hdl.handle.net/10481/88716
dc.description.abstractThe estimation of defects positioning occurring in the interface between different materials is performed by using an artificial neural network modeled as an inverse heat conduction problem. Identifying contact failures in the bonding process of different materials is crucial in many engineering applications, ranging from manufacturing, preventive inspection and even failure diagnosis. This can be modeled as an inverse heat conduction problem in multilayered media, where thermography temperature measurements from an exposed surface of the media are available. This work solves this inverse problem with an artificial neural network that receives these experimental data as input and outputs the thermalphysical properties of the adhesive layer, where defects can occur. An autoencoder is used to reduce the dimension of the transient 1D thermography data, where its latent space represents the experimental data in a lower dimension, then these reduced data are used as input to a fully connected multilayer perceptron network. Results indicate that this is a promising approach due to the good accuracy and low computational cost observed. In addition, by including different noise levels within a defined range in the training process, the network can generalize the experimental data input and estimate the positioning of defects with similar quality.es_ES
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)es_ES
dc.description.sponsorshipFundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)es_ES
dc.description.sponsorshipGrant CAPES/PrInt No. 88887.469279/2019-00es_ES
dc.description.sponsorshipPID2020-112754 GB-I00 (Spanish Ministry of Economy and Competitiveness and funds from the European Regional Developement Fund, ERDF)es_ES
dc.description.sponsorshipB-TIC-640-UGR20 (Regional Govern of Andalusia, Spain)es_ES
dc.language.isoenges_ES
dc.publisherAnais da Academia Brasileira de Ciênciases_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleContact Failure Identification in Multilayered Media via Artificial Neural Networks and Autoencoderses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1590/0001-3765202220211577
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional