Mostrar el registro sencillo del ítem

dc.contributor.authorEscabias Machuca, Manuel 
dc.contributor.authorAguilera Del Pino, Ana María 
dc.contributor.authorAcal González, Christian José 
dc.date.accessioned2024-02-08T08:09:44Z
dc.date.available2024-02-08T08:09:44Z
dc.date.issued2022
dc.identifier.citationThe R Journal, 14 (3), 231 - 248es_ES
dc.identifier.urihttps://hdl.handle.net/10481/88660
dc.description.abstractThe functional logit regression model was proposed by Escabias et al. (2004) with the objective of modeling a scalar binary response variable from a functional predictor. The model estimation proposed in that case was performed in a subspace of L2(T) of squared integrable functions of finite dimension, generated by a finite set of basis functions. For that estimation it was assumed that the curves of the functional predictor and the functional parameter of the model belong to the same finite subspace. The estimation so obtained was affected by high multicollinearity problems and the solution given to these problems was based on different functional principal component analysis. The logitFD package introduced here provides a toolbox for the fit of these models by implementing the different proposed solutions and by generalizing the model proposed in 2004 to the case of several functional and non-functional predictors. The performance of the functions is illustrated by using data sets of functional data included in the fda.usc package from R-CRAN.es_ES
dc.language.isoenges_ES
dc.publisherThe R Foundationes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titlelogitFD: an R package for functional principal component logit regressiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.32614/RJ-2022-053


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional