Mostrar el registro sencillo del ítem

dc.contributor.authorRobles Remacho, Agustín 
dc.contributor.authorLuque González, Angélica
dc.contributor.authorCano Cortes, María Victoria 
dc.contributor.authorLópez Delgado, Francisco Javier
dc.contributor.authorGuardia Monteagudo, Juan José
dc.contributor.authorFara, Mario A.
dc.contributor.authorSánchez Martín, Rosario María 
dc.contributor.authorDíaz Mochón, Juan José 
dc.date.accessioned2024-02-07T11:27:43Z
dc.date.available2024-02-07T11:27:43Z
dc.date.issued2021-05-01
dc.identifier.citationAgustín Robles-Remacho, M. Angélica Luque-González, Roberto A. González-Casín, M. Victoria Cano-Cortés, F. Javier Lopez-Delgado, Juan J. Guardia-Monteagudo, Mario Antonio Fara, Rosario M. Sánchez-Martín, Juan José Díaz-Mochón, Development of a nanotechnology-based approach for capturing and detecting nucleic acids by using flow cytometry, Talanta, 226, 2021, 122092, ISSN 0039-9140, https://doi.org/10.1016/j.talanta.2021.122092.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/88574
dc.description.abstractNucleic acid-based molecular diagnosis has gained special importance for the detection and early diagnosis of genetic diseases as well as for the control of infectious disease outbreaks. The development of systems that allow for the detection and analysis of nucleic acids in a low-cost and easy-to-use way is of great importance. In this context, we present a combination of a nanotechnology-based approach with the already validated dynamic chemical labeling (DCL) technology, capable of reading nucleic acids with single-base resolution. This system allows for the detection of biotinylated molecular products followed by simple detection using a standard flow cytometer, a widely used platform in clinical and molecular laboratories, and therefore, is easy to implement. This proof-of-concept assay has been developed to detect mutations in KRAS codon 12, as these mutations are highly important in cancer development and cancer treatments.es_ES
dc.description.sponsorshipThis research was supported by the Spanish Ministry of Economy and Competitiveness (grant number BIO2016-80519). The authors are members of the NANOCARE network (RED2018-102469-T) funded by the STATE INVESTIGATION AGENCY. ARR thanks the Spanish Ministry of Education for PhD funding (scholarship FPU15/06418). FJ Lopez Delgado thanks the Spanish Ministry of Economy and Competitiveness for the Torres Quevedo fellowship (PTQ-16- 08597). These studies were approved and supported by DestiNA Genomics Ltd. Schemes in Figs. 1 and 4–6 have been partially created using BioRender.com.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNucleic acid testing (NAT)es_ES
dc.subjectFluorescence-activated cell sorting (FACS)es_ES
dc.subjectNanotechnologyes_ES
dc.subjectDynamic chemical labeling (DCL)es_ES
dc.subjectPeptide nucleic acid (PNA)es_ES
dc.subjectKRAS point Mutationes_ES
dc.titleDevelopment of a nanotechnology-based approach for capturing and detecting nucleic acids by using flow cytometryes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doi10.1016/j.talanta.2021.122092
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional