• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the use of m-probability-estimation and imprecise probabilities in the naive Bayes classifier

[PDF] Artículo versión aceptada. (306.5Kb)
Identificadores
URI: https://hdl.handle.net/10481/88573
DOI: 10.1142/S0218488520500282
ISSN: 0218-4885
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
García Castellano, Francisco Javier; Moral García, Serafín; Mantas Ruiz, Carlos Javier; Abellán Mulero, Joaquín
Editorial
World Scientific
Materia
Supervised learning
 
Naive Bayes
 
m-estimate
 
m-probability-estimation
 
Imprecise probabilities
 
Noisy data
 
Fecha
2020-08
Referencia bibliográfica
Castellano, J. G., Moral-García, S., Mantas, C. J., & Abellán, J. (2020). On the use of m-probability-estimation and imprecise probabilities in the naive Bayes classifier. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 28(4). Doi:10.1142/S0218488520500282
Patrocinador
This work has been supported by the Spanish “Ministerio de Economíaa y Competitividad” and by “Fondo Europeo de Desarrollo Regional” (FEDER) under Project TEC2015-69496-R.
Resumen
Within the field of supervised classification, the naïve Bayes (NB) classifier is a very simple and fast classification method that obtains good results, being even comparable with much more complex models. It has been proved that the NB model is strongly dependent on the estimation of conditional probabilities. In the literature, it had been shown that the classical and Laplace estimations of probabilities have some drawbacks and it was proposed a NB model that takes into account the a priori probabilities in order to estimate the conditional probabilities, which was called m-probability-estimation. With a very scarce experimentation, this approximation based on m-probability-estimation demonstrated to provide better results than NB with classical and Laplace estimations of probabilities. In this research, a new naïve Bayes variation is proposed, which is based on the m-probability-estimation version and takes into account imprecise probabilities in order to calculate the a priori probabilities. An exhaustive experimental research is carried out, with a large number of data sets and different levels of class noise. From this experimentation, we can conclude that the proposed NB model and the m-probability-estimation approach provide better results than NB with classical and Laplace estimation of probabilities. It will be also shown that the proposed NB implies an improvement over the m-probability-estimation model, especially when there is some class noise.
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias