Afficher la notice abrégée

dc.contributor.authorGriol Barres, David 
dc.contributor.authorMolina, José Manuel
dc.contributor.authorSanchis, Araceli
dc.contributor.authorCallejas Carrión, Zoraida 
dc.date.accessioned2024-02-07T11:17:47Z
dc.date.available2024-02-07T11:17:47Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/10481/88570
dc.description.abstractWith the advances in Language Technologies and Natural Language Processing, conversational interfaces have begun to play an increasingly important role in the design of human-machine interaction systems in a number of devices and intelligent environments. In this paper, we present a statistical model for spoken dialog segmentation and labeling based on a generative model learned using decision trees. We have applied our proposal in a practical conversational system that helps solving simple and routine software and hardware repairing problems. The results of the evaluation show that automatic segmentation of spoken dialogs is very effective for human-machine dialogs. The same statistical model has been applied to human-human conversations and provides a good baseline as well insights in the model limitation.es_ES
dc.description.sponsorshipThis work was supported in part by Projects TRA2015-63708-R and TRA2016-78886-C3-1-R.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDomain knowledge acquisitiones_ES
dc.subjectDialog structure annotationes_ES
dc.subjectConversational interfaceses_ES
dc.titleA data-driven approach to spoken dialog segmentationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2019.02.072
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional