Afficher la notice abrégée

dc.contributor.authorDe la Hoz Torres, María Luisa 
dc.contributor.authorAguilar Aguilera, Antonio Jesús 
dc.contributor.authorRuiz Padillo, Diego Pablo 
dc.contributor.authorMartínez Aires, María Dolores 
dc.date.accessioned2024-02-05T15:03:08Z
dc.date.available2024-02-05T15:03:08Z
dc.date.issued2024-05-01
dc.identifier.citationde la Hoz-Torres, M. L., Aguilar, A. J., Ruiz, D. P., & Martínez-Aires, M. D. (2024). An investigation of indoor thermal environments and thermal comfort in naturally ventilated educational buildings. Journal of Building Engineering, 108677.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/88298
dc.description.abstractIndoor thermal conditions are essential in educational buildings. The health and well-being of students can be affected by a poor thermal environment, which also has a clear impact on building energy consumption. In this context, the indoor thermal environment in naturally ventilated university classrooms is explored in this study during a complete academic year. A monitoring campaign and a questionnaire survey were conducted simultaneously in higher education buildings in Spain. A total of 2115 sets of data were collected. Thermal sensation prediction indices (predicted mean vote, extended predicted mean vote and adaptive predicted mean vote) were applied to evaluate student’s thermal perception and their prediction accuracy was assessed. Additionally, two machine-learning models, based on Artificial neural network (ANN) and random forest (RF) algorithms, were formulated to predict occupants’ thermal sensation. The obtained results evidenced that the proposed ANN and RF models outperform traditional indices. Finally, it is also proposed an adaptive thermal comfort model. The results obtained suggest that students have a greater adaptive capacity to changes in environmental conditions than suggested by the ASHRAE-55 adaptive model and that they preferred an environment with lower temperatures than those suggested by the EN-16798 adaptive model.es_ES
dc.description.sponsorshipThis publication is part of the I + D + i project PID2019-108761RB-I00, funded by MCIN/AEI/10.13039/501100011033. Antonio J. Aguilar wishes to acknowledge the support of the University of Granada under a post-doctoral research contract. María Luisa de la Hoz-Torres wishes to acknowledge the support of the Ministerio de Ciencia, Innovación y Universidades of Spain under a Margarita Salas post-doctoral contract funded by the European Union-NextGenerationEU. Funding for open access charge: Universidad de Granada / CBUA.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEducational buildingses_ES
dc.subjectBuilt environmentes_ES
dc.subjectThermal comfortes_ES
dc.subjectMachine learninges_ES
dc.subjectNatural ventilationes_ES
dc.subjectAdaptive modeles_ES
dc.titleAn investigation of indoor thermal environments and thermal comfort in naturally ventilated educational buildingses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.jobe.2024.108677
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional