• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

AdaptativeCC4. 5: Credal C4. 5 with a rough class noise estimator

[PDF] AdaptativeCC45.pdf (1.008Mo)
Identificadores
URI: https://hdl.handle.net/10481/88260
DOI: 10.1016/j.eswa.2017.09.057
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Abellán Mulero, Joaquín; Mantas Ruiz, Carlos Javier; García Castellano, Francisco Javier
Editorial
Elsevier
Materia
Classification
 
Decision trees
 
Imprecise probabilities
 
Uncertainty measures
 
Noisy data
 
Date
2018-02
Patrocinador
This work has been supported by the Spanish “Ministerio de Economía y Competitividad” and by “Fondo Europeo de Desarrollo Regional” (FEDER) under Project TEC2015-69496-R.
Résumé
The application of classifiers on data represents an important help in a process of decision making. Any classifier, or other method used for knowledge extraction, suffers a deterioration when it is applied on data with noise. Credal C4.5 (CC4.5) is a recent method of classification, that introduces imprecise probabilities in the algorithm of the classic C4.5. It is very suitable in classification noise tasks, but it has a clear dependency of a parameter. It has been proved that this parameter is related with the level of overfitting of the model on the data used for training. In noisy domains, this characteristic is important in the sense that variations of this parameter can reduce the variance of the model. Depending on the degree of noise that a data set has, the application of different values of this parameter can produce different performance of the CC4.5 model. Hence, the use of the correct parameter is fundamental to attain a high level of performance for this model. In this paper, that problem is solved via a rough procedure to estimate the level of class noise in the training data. Combining this new noise estimation process with the CC4.5, it is presented a direct method that has an equivalent performance than the one of the CC4.5 when it is used with the best value of its parameter for each level of class noise.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire