• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A multi-objective evolutionary fuzzy system to obtain a broad and accurate set of solutions in intrusion detection systems

[PDF] 2019-SOCO-IDS_MOEA.pdf (1.243Mb)
Identificadores
URI: https://hdl.handle.net/10481/87929
DOI: 10.1007/s00500-017-2856-4
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Elhag, Salma; Fernández Hilario, Alberto Luis; Altalhi, Abdulrahman; Alshomrani, Saleh; Herrera Triguero, Francisco
Editorial
Soft Computing
Fecha
2019
Referencia bibliográfica
Salma Elhag, Alberto Fernández, Abdulrahman Altalhi, Saleh Alshomrani, Francisco Herrera; A multi-objective evolutionary fuzzy system to obtain a broad and accurate set of solutions in intrusion detection systems. Soft Comput (2019) 23:1321–1336
Resumen
Intrusion detection systems are devoted to monitor a network with aims at finding and avoiding anomalous events. In particular, we focus on misuse detection systems, which are trained to identify several known types of attacks. These can be unauthorized accesses, or denial of service attacks, among others. Whenever it scans a trace of a suspicious event, it is programmed to trigger an alert and/or to block this dangerous access to the system. Depending on the security policies of the network, the administrator may seek different requirements that will have a strong dependency on the behavior of the intrusion detection system. For a given application, the cost of raising false alarms could be higher than carrying out a preventive access lock. In other scenarios, there could be a necessity of correctly identifying the exact type of cyber attack to proceed in a given way. In this paper, we propose a multi-objective evolutionary fuzzy system for the development of a system that can be trained using different metrics. By increasing the search space during the optimization of the model, more accurate solutions are expected to be obtained. Additionally, this scheme allows the final user to decide, among a broad set of solutions, which one is better suited for the current network characteristics. Our experimental results, using thewell-known KDDCup’99 problem, supports the quality of this novel approach in contrast to the state-of-the-art for evolutionary fuzzy systems in intrusion detection, as well as the C4.5 decision tree
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias