Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez-Moreno, Marcos F.
dc.contributor.authorPovedano-Priego, Cristina 
dc.contributor.authorMumford, Adam D.
dc.contributor.authorMorales-Hidalgo, Mar 
dc.contributor.authorMijnendonckx, Kristel
dc.contributor.authorJroundi, Fadwa 
dc.contributor.authorOjeda, Jesus J.
dc.contributor.authorMerroun, Mohamed L.
dc.date.accessioned2024-01-25T10:42:03Z
dc.date.available2024-01-25T10:42:03Z
dc.date.issued2024-01-17
dc.identifier.citationMartinez-Moreno, M. F., Povedano-Priego, C., Mumford, A. D., Morales-Hidalgo, M., Mijnendonckx, K., Jroundi, F., ... & Merroun, M. L. (2024). Microbial responses to elevated temperature: Evaluating bentonite mineralogy and copper canister corrosion within the long-term stability of deep geological repositories of nuclear waste. Science of The Total Environment, 170149.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/87268
dc.description.abstractDeep Geological Repositories (DGRs) consist of radioactive waste contained in corrosion-resistant canisters, surrounded by compacted bentonite clay, and buried few hundred meters in a stable geological formation. The effects of bentonite microbial communities on the long-term stability of the repository should be assessed. This study explores the impact of harsh conditions (60 °C, highly-compacted bentonite, low water activity), and acetate:lactate:sulfate addition, on the evolution of microbial communities, and their effect on the bentonite mineralogy, and corrosion of copper material under anoxic conditions. No bentonite illitization was observed in the treatments, confirming its mineralogical stability as an effective barrier for future DGR. Anoxic incubation at 60 °C reduced the microbial diversity, with Pseudomonas as the dominant genus. Culture-dependent methods showed survival and viability at 60 °C of moderate-thermophilic aerobic bacterial isolates (e.g., Aeribacillus). Despite the low presence of sulfate-reducing bacteria in the bentonite blocks, we proved their survival at 30 °C but not at 60 °C. Copper disk's surface remained visually unaltered. However, in the acetate:lactate:sulfate-treated samples, sulfide/sulfate signals were detected, along with microbial-related compounds. These findings offer new insights into the impact of high temperatures (60 °C) on the biogeochemical processes at the compacted bentonite/Cu canister interface post-repository closure.es_ES
dc.description.sponsorshipDepartamento de Microbiología, Facultad de Ciencias.es_ES
dc.language.isoenges_ES
dc.relation.ispartofseriesVolume 915;170149
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectNuclear repositoryes_ES
dc.subjectCompacted bentonitees_ES
dc.subjectHigh temperaturees_ES
dc.subjectMicrobial diversityes_ES
dc.subjectSulfate-reducing bacteriaes_ES
dc.subjectCopper corrosiones_ES
dc.titleMicrobial responses to elevated temperature: Evaluating bentonite mineralogy and copper canister corrosion within the long-term stability of deep geological repositories of nuclear wastees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.scitotenv.2024.170149
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License