Mostrar el registro sencillo del ítem

dc.contributor.authorEscobar Pérez, Juan José 
dc.contributor.authorOrtega Lopera, Julio 
dc.contributor.authorDíaz García, Antonio Francisco 
dc.contributor.authorGonzález Peñalver, Jesús 
dc.contributor.authorDamas Hermoso, Miguel 
dc.date.accessioned2024-01-23T10:50:42Z
dc.date.available2024-01-23T10:50:42Z
dc.date.issued2018
dc.identifier.citationPublished version: Escobar JJ, Ortega J, Díaz AF, González J, Damas M. Energy-aware load balancing of parallel evolutionary algorithms with heavy fitness functions in heterogeneous CPU-GPU architectures. Concurrency and Computation: Practice and Experience. 2019; 31.6:e4688. https://doi.org/10.1002/cpe.4688es_ES
dc.identifier.urihttps://hdl.handle.net/10481/87151
dc.description.abstractBy means of the availability of mechanisms such as Dynamic Voltage and Frequency Scaling (DVFS) and heterogeneous architectures including processors with different power consumption profiles, it is possible to devise scheduling algorithms aware of both runtime and energy consumption in parallel programs. In this paper, we propose and evaluate a multi-objective (more specifically, a bi-objective) approach to distribute the workload among the processing cores in a given heterogeneous parallel CPU-GPU architecture. The aim of this distribution may be either to save energy without increasing the running time or to reach a trade-off among time and energy consumption. The parallel programs considered here are master-worker evolutionary algorithms where the evaluation of the fitness function for the individuals in the population demands the most part of the computing time. As many useful bioinformatics and data mining applications exhibit this kind of parallel profile, the proposed energy-aware approach for workload scheduling could be frequently applied.es_ES
dc.description.sponsorshipSpanish Ministerio de Economía y Competitividad under grant TIN2015-67020-Pes_ES
dc.description.sponsorshipERDF fundes_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectDynamic Voltage and Frequency Scaling (DVFS)es_ES
dc.subjectEnergy-aware Schedulinges_ES
dc.subjectHeterogeneous CPU-GPU Parallel Architectureses_ES
dc.subjectLoad Balancinges_ES
dc.subjectMaster-worker Algorithmses_ES
dc.subjectModeling of Energy Consumptiones_ES
dc.titleEnergy-aware Load Balancing of Parallel Evolutionary Algorithms with Heavy Fitness Functions in Heterogeneous CPU-GPU Architectureses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/cpe.4688
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License