Afficher la notice abrégée

dc.contributor.authorEscobar Pérez, Juan José 
dc.contributor.authorOrtega Lopera, Julio 
dc.contributor.authorGonzález Peñalver, Jesús 
dc.contributor.authorDamas Hermoso, Miguel 
dc.contributor.authorDíaz García, Antonio Francisco 
dc.date.accessioned2024-01-19T10:18:40Z
dc.date.available2024-01-19T10:18:40Z
dc.date.issued2017-06-17
dc.identifier.citationEscobar, J.J., Ortega, J., González, J. et al. Parallel high-dimensional multi-objective feature selection for EEG classification with dynamic workload balancing on CPU–GPU architectures. Cluster Computing 20, 1881-1897 (2017). https://doi.org/10.1007/s10586-017-0980-7es_ES
dc.identifier.urihttps://hdl.handle.net/10481/86949
dc.description.abstractMany bioinformatics applications that analyse large volumes of high-dimensional data comprise complex problems requiring metaheuristics approaches with different types of implicit parallelism. For example, although functional parallelism would be used to accelerate evolutionary algorithms, the fitness evaluation of the population could imply the computation of cost functions with data parallelism. This way, heterogeneous parallel architectures, including Central Processing Unit (CPU) microprocessors with multiple superscalar cores and accelerators such as Graphics Processing Units (GPUs) could be very useful. This paper aims to take advantage of such CPU-GPU heterogeneous architectures to accelerate Electroencephalogram (EEG) classification and feature selection problems by evolutionary multi-objective optimization, in the context of Brain Computing Interface (BCI) tasks. In this paper, we have used the OpenCL framework to develop parallel master-worker codes implementing an evolutionary multi-objective feature selection procedure in which the individuals of the population are dynamically distributed among the available CPU and GPU cores.es_ES
dc.description.sponsorshipERDF fundes_ES
dc.description.sponsorshipSpanish Ministerio de Economía y Competitividad under grant TIN2015-67020-Pes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectDynamic Task Schedulinges_ES
dc.subjectMulti-objective EEG Classificationes_ES
dc.subjectFeature Selectiones_ES
dc.subjectGPUes_ES
dc.subjectHeterogeneous Parallel Architectureses_ES
dc.subjectMemory Access Optimizationes_ES
dc.titleParallel High-dimensional Multi-objective Feature Selection for EEG Classification with Dynamic Workload Balancing on CPU–GPU Architectureses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s10586-017-0980-7
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License