Afficher la notice abrégée

dc.contributor.authorPérez Bueno, Fernando 
dc.contributor.authorLópez Pérez, Miguel 
dc.contributor.authorVega López, Miguel 
dc.contributor.authorMateos Delgado, Javier 
dc.contributor.authorNaranjo, Valery
dc.contributor.authorMolina Soriano, Rafael 
dc.contributor.authorKatsaggelos, Aggelos
dc.date.accessioned2023-12-20T11:34:10Z
dc.date.available2023-12-20T11:34:10Z
dc.date.issued2020-06
dc.identifier.citationF. Pérez-Bueno, M. López-Pérez, M. Vega, J. Mateos, V. Naranjo, R. Molina, A.K. Katsaggelos, “A TV-based Image Processing Framework for Blind Color Deconvolution and Classification of Histological Images,” Digital Signal Processing, vol. 101, no. 6, p. 102727, Jun. 2020.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/86368
dc.description.abstractIn digital histopathological image analysis, two conflicting objectives are often pursued: closeness to the original tissue and high classification performance. The former objective tries to recover images (stains) that are as close as possible to the ones obtained by staining the tissue with a single dye. The latter objective requires images that allow the extraction of better features for an improved classification, even if their appearance is not close to single stained tissues. In this paper we propose a framework that achieves both objectives depending on the number of stains used to mathematically decompose the scanned image. The proposed framework uses a total variation prior for each stain together with the similarity to a given reference color-vector matrix. Variational inference and an evidence lower bound are utilized to automatically estimate all the latent variables and model parameters. The proposed methodology is tested on real images and compared to classical and state-of-the-art methods for histopathological blind image color deconvolution and prostate cancer classification.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación under Contract BES-2017-081584 and project DPI2016-77869-C2-2-Res_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseriesDigital Signal Processing;
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectBlind color deconvolutiones_ES
dc.subjectHistopathological imageses_ES
dc.subjectVariational Bayeses_ES
dc.subjectProstate canceres_ES
dc.titleA TV-based Image Processing Framework for Blind Color Deconvolution and Classification of Histological Imageses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doi10.1016/j.dsp.2020.102727


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License