Afficher la notice abrégée

dc.contributor.authorMuñoz Postigo, Javier
dc.contributor.authorValero Benito, Eva María 
dc.contributor.authorMartínez Domingo, Miguel Ángel 
dc.contributor.authorLara Vargas, Francisco Jesús 
dc.contributor.authorNieves Gómez, Juan Luis 
dc.contributor.authorRomero Mora, Francisco Javier 
dc.contributor.authorHernández Andrés, Javier 
dc.date.accessioned2023-12-14T09:10:50Z
dc.date.available2023-12-14T09:10:50Z
dc.date.issued2023-11-10
dc.identifier.citationMunoz-Postigo, J., Valero, E. M., Martinez-Domingo, M. A., Lara, F. J., Nieves, J. L., Romero, J., & Hernández-Andrés, J. (2023). Band selection pipeline for maturity stage classification in bell peppers: From full spectrum to simulated camera data. Journal of Food Engineering, 111824.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/86192
dc.description.abstractThis paper describes a workflow for classifying the maturity of bell peppers using hyperspectral imaging and machine learning. The approach involves using spectral reflectance to determine the number of maturity stages, followed by a classification task using the optimal bands for accurate classification. The study explores a realistic scenario using simulated camera responses and investigates the use of real sensors with their spectral sensitivities and noise. Four classifier algorithms (RBFNN, PLS-DA, SVM, and LDA) were employed to predict the maturity stage based on spectral reflectance. The best results were achieved with the LDA algorithm, which was used in the optimization process for band selection. The optimized bands in the VISNIR range (400–1000 nm) were found to be [783.5, 844.1, and 905.4] nm, with an accuracy of 90.67% for spectral data. For camera responses with intermediate-level noise, the best bands were [760, 820, and 900 nm], achieving an accuracy of 81%. Overall, using three bands yielded satisfactory and practical results for real-world implementation.es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSpectral imaginges_ES
dc.subjectBell pepperses_ES
dc.subjectPartial Least Squareses_ES
dc.titleBand selection pipeline for maturity stage classification in bell peppers: From full spectrum to simulated camera dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.jfoodeng.2023.111824
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional